
Jam.py documentation Documentation

Andrew Yushev

Aug 02, 2023

Contents

1 Jam.py documentation 1
1.1 How the documentation is organized . 1
1.2 Video Tutorials . 1

2 Getting started 3
2.1 Installation . 3
2.2 Creating a project . 6
2.3 Demo project . 9
2.4 Tutorial. Part 1. First project . 11
2.5 Tutorial. Part 2. File and image fields . 45
2.6 Tutorial. Part 3. Details . 58
2.7 Jam.py deployment with Apache and mod_wsgi . 65

3 Jam.py programming 67
3.1 Task tree . 67
3.2 Workflow . 69
3.3 Working with modules . 70
3.4 Client side programming . 70
3.5 Data programming . 80
3.6 Server side programming . 96
3.7 Programming reports . 98

4 Jam.py FAQ 107
4.1 What is the difference between catalogs and journals . 107
4.2 Howto upgrade an already created project to a new version of jampy? 107
4.3 What are foreign keys used for? . 108
4.4 Can I use other libraries in my application . 108
4.5 When printing a report I get an ods file instead of pdf . 108

5 How to 109
5.1 How to install Jam.py on Windows . 109
5.2 How to migrate development to production . 111
5.3 How to migrate to another database . 112
5.4 How to deploy . 113
5.5 How do I write functions which have a global scope . 121
5.6 How to validate field value . 121
5.7 How to add a button to a form . 123

i

5.8 How to execute script from client . 123
5.9 How to change style and attributes of form elements . 124
5.10 How to create a custom menu . 126
5.11 How to append a record using an edit form without opening a view form? 126
5.12 How to prohibit changing record . 127
5.13 How to link two tables . 127
5.14 How change field value of selected records . 131
5.15 How to save edit form without closing it . 134
5.16 How to save changes to two tables in same transaction on the server 134
5.17 How to prevent duplicate values in a table field . 135
5.18 How to implement some sort of basic multi-tenancy? For example, to have users with separate data. . 136
5.19 Can I use Jam.py with existing database . 137
5.20 How can I use data from other database tables . 137
5.21 How I can process a request or get some data from other application or service 139
5.22 How can I perform calculations in the background . 139
5.23 Is it supported to have details inside details? . 140
5.24 Export to / import from csv files . 142
5.25 Authentication . 144

6 Business application builder 153
6.1 Sanitizing . 153
6.2 Accept string . 155
6.3 Project management . 156
6.4 Roles . 169
6.5 Users . 170
6.6 Code editor . 172
6.7 Task . 174
6.8 Groups . 175
6.9 Items . 180
6.10 Details . 201
6.11 Lookup List Dialog . 202
6.12 Intergation with existing database . 205
6.13 Saving audit trail/change history made by users . 205
6.14 Record locking . 209
6.15 Language support . 212
6.16 Language translation . 215

7 Jam.py class reference 217
7.1 Client side (javascript) class reference . 217
7.2 Server side (python) class reference . 362

8 Release notes 427
8.1 Version 1 . 427
8.2 Version 2 . 427
8.3 Version 3 . 427
8.4 Version 4 . 427
8.5 Version 5 . 430
8.6 Jam.py roadmap . 442

Index 443

ii

CHAPTER 1

Jam.py documentation

1.1 How the documentation is organized

Here is an overview of how the documentation is organized, that will help you know where to look for certain things:

Getting started topics describe how to install the framework, create a new project, take you through a series of steps
to develop a Web application and explains how to deploy it.

Programming guides discuss key topics and concepts at a fairly high level and provide useful background information
and explanation.

Business application builder is a detailed description of the Application Builder used for application development and
database administration.

Class reference guides contain technical reference for Jam.py classes APIs

FAQ topics covers most frequently asked questions.

How to contains code examples that can be useful to quickly accomplish common tasks

Or you can go to the table of contents

1.2 Video Tutorials

If you are new to Jam.py, we highly recommend that you watch these video tutorials

It is recommended to watch these videos with a resolution of 1080p

Tutorial 1 - Working with files and images

Tutorial 2 - Working with details

Tutorial 3 - Users, roles, audit trail/change history

Tutorial 4 - Task tree

Tutorial 5 - Forms

1

https://youtu.be/9rFXPyfN0Hg
https://youtu.be/sbvxE-vEfsM
https://youtu.be/60LiWZa0CpY
https://youtu.be/hsSKqEh6vL4
https://youtu.be/3sh-TSt52P0

Jam.py documentation Documentation

Tutorial 6 - Form events

Tutorial 7 - Data aware controls

Tutorial 8 - Datasets

Tutorial 9 - Datasets Part 2

Tutorial 10 - Fields and filters

Tutorial 11 - Client-server interactions

Tutorial 12 - Working with data on the server

2 Chapter 1. Jam.py documentation

https://youtu.be/DY463lcv0R4
https://youtu.be/fMTq8P4XdGw
https://youtu.be/gHTYj7h9ljI
https://youtu.be/1bUGmgBfrNw
https://youtu.be/ahXqlZrA0fQ
https://youtu.be/nLOhdA2FX0I
https://youtu.be/dDK78lIjHHY

CHAPTER 2

Getting started

Here you can learn how to install the framework, create a new project, develop a web application and deploy it.

2.1 Installation

2.1.1 Install python

Jam.py requires python. If it is not installed you can get the latest version of Python at https://www.python.org/
download/

You can use the following versions of Python with Jam.py:

Python 2

• Python 2.7 and newer

Python 3

• Python 3.4 and newer

You can verify that Python is installed by typing python from your shell; you should see something like:

Python 2.7.12 (default, Nov 19 2016, 06:48:10)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

If Python 2 and Python 3 are installed try to type python3:

Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

3

https://www.python.org/download/
https://www.python.org/download/

Jam.py documentation Documentation

2.1.2 Install Jam.py

Installing an official release with pip

This is the recommended way to install Jam.py.

1. Install pip. The easiest is to use the standalone pip installer. If your distribution already has pip installed, you
might need to update it if it’s outdated. (If it’s outdated, you’ll know because installation won’t work.)

2. If you’re using Linux, Mac OS X or some other flavor of Unix, enter the command

sudo pip install jam.py

at the shell prompt.

If you’re using Windows, start a command shell with administrator privileges and run the command

pip install jam.py

This will install Jam.py in your Python installation’s site-packages directory.

Installing an official release manually

1. Download the package archive.

2. Create a new directory and unpack the archive there.

3. Go into the directory and run the setup command from command line

$ python setup.py install

This will install Jam.py in your Python installation’s site-packages directory.

Note: on some unix like systems you may need to switch to root or run: sudo python setup.py install

2.1.3 Setting up a virtual environment

It is best practice to provide a dedicated environment for each Jam.py project you create. There are many options
to manage environments and packages within the Python ecosystem, some of which are recommended in the Python
documentation.

To create a virtual environment for your project, open a new command prompt, navigate to the folder where you want
to create your project and then enter the following:

...\> py -m venv project-name

This will create a folder called ‘project-name’ if it does not already exist and set up the virtual environment. To activate
the environment, run:

...\> project-name\Scripts\activate.bat

The virtual environment will be activated and you’ll see “(project-name)” next to the command prompt to designate
that. Each time you start a new command prompt, you’ll need to activate the environment again.

4 Chapter 2. Getting started

http://www.pip-installer.org/
http://www.pip-installer.org/en/latest/installing.html#install-pip
https://packaging.python.org/guides/tool-recommendations/
https://packaging.python.org/guides/tool-recommendations/

Jam.py documentation Documentation

2.1.4 Install Jam.py

Jam.py can be installed easily using pip within your virtual environment.

In the command prompt, ensure your virtual environment is active, and execute the following command:

...\> py -m pip install jam.py

This will download and install the latest Jam.py release.

After the installation has completed, you can verify your Jam.py installation by executing pip list in the command
prompt.

2.1.5 Common pitfalls

• If you are connecting to the internet behind a proxy, there might be problems in running the command py -m
pip install Jam.py. Set the environment variables for proxy configuration in the command prompt as
follows:

...\> set http_proxy=http://username:password@proxyserver:proxyport

...\> set https_proxy=https://username:password@proxyserver:proxyport

• If your Administrator prohibited setting up a virtual environment, it is still possible to install Jam.py as follows:

...\> python -m pip install jam.py

This will download and install the latest Jam.py release.

After the installation has completed, you can verify your Jam.py installation by executing pip list in the
command prompt.

However, running jam-project.py will fail since it is not in the path. Check the installation folder:

...\> python -m site --user-site

The output might be similar to below:

C:\Users\youruser\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_
→˓qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages

Replace site-packages at the end of above line with Scripts:

...\> dir C:\Users\youruser\AppData\Local\Packages\PythonSoftwareFoundation.
→˓Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\Scripts

The output might be similar to below:

...\> Directory of
→˓C:\Users\yourser\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_
→˓qbz5n2kfra8p0\LocalCache\local-packages\Python39\Scripts

13/04/2023 02:59 PM <DIR> .
13/04/2023 02:59 PM <DIR> ..
13/04/2023 02:59 PM 1,087 jam-project.py

1 File(s) 1,087 bytes
2 Dir(s) 177,027,321,856 bytes free

Create the new folder somewhere and run jam-project from from it:

2.1. Installation 5

Jam.py documentation Documentation

...\> python C:\Users\youruser\AppData\Local\Packages\PythonSoftwareFoundation.
→˓Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\Scripts\jam-project.
→˓py

Run the new project:

...\> python server.py

2.2 Creating a project

Create a new directory.

Go into the directory and run from command line:

$ jam-project.py

The following files and folders will be created in the directory:

/
css/
js/
img/
reports/
static/
admin.sqlite
server.py
index.html
wsgi.py

To start Jam.py web server run server.py script.

$./server.py

Note: You can specify a port as parameter, for example

$./server.py 8081.

By default, the port is 8080. If you will specify another port, you need to use it in a browser in the next steps.

Open a Web browser and go to “/builder.html” on your local domain – e.g., http://127.0.0.1:8080/builder.html. You
should see the select language dialog.

127.0.0.1:8080/builder.html

In the dialog that will appear, select the language and press OK button.

6 Chapter 2. Getting started

http://127.0.0.1:8080/builder.html

Jam.py documentation Documentation

In the New project dialog box fill in:

• Caption - the project name that appears to users

• Name - name of project (task) that will be used in programming code to get access to the task object. Should be
a short valid python identifier. This name is used as a prefix when creating a table in the project database.

• DB type — select database type. If database is not Sqlite, it must be created in advance and its attributes should
be entered in the corresponding form fields. To see examples of Database setup, follow the link.

2.2. Creating a project 7

Jam.py documentation Documentation

When you press OK, the connection to the database will be checked, and in case of failure an error message will be
displayed.

Note: Please note the following requirements:

• to use FireBird database, the python fdb library must be installed

• PostgreSQL requires psycopg2 library

• MySQL requires MySQLdb library

• Oracle requires cx_Oracle library

• MSSQL requires pymssql library

• to generate reports LibreOffice must be installed

Note: For SQLite database, when an item field is deleted or renamed, or foreign key is created, Application builder,
creates a new table and copies records from the old one into it.

8 Chapter 2. Getting started

Jam.py documentation Documentation

For SQLite database, Jam.py doesn’t support importing of metadata into an existing project (project with tables in the
database). You can only import metadata into a new project.

If all goes well, a new project will be created and the project tree will appear in the Application builder.

Now, to see the project itself, create a new page in the browser and type in the address bar:

127.0.0.1:8080

2.3 Demo project

The framework has a full fledged demo application that demonstrates programming techniques used in the framework.

The demo is located in the demo folder of the Jam.py package or you can download it by clicking on the link.

To start the demo application go to the demo folder and run server.py script.

$./server.py

Open a Web browser and enter 127.0.0.1:8080 in the address bar.

To see Application builder open a new page in a browser and enter 127.0.0.1:8080/builder.html

2.3. Demo project 9

http://jam-py.com/download/demo.tar.gz

Jam.py documentation Documentation

10 Chapter 2. Getting started

Jam.py documentation Documentation

2.4 Tutorial. Part 1. First project

Now, we’ll walk you through the creation of a basic CRM application. Please follow the steps below:

2.4.1 New project

We’ll assume that jam.py is already installed. If not, see Installation guide how to do it.

First we create a folder for the new project and in this folder we execute the jam-project.py script to create the project
structures.

$ jam-project.py

After that we run server.py script that jam-project.py have created:

$./server.py

Now, to complete the creation of the project, open the web browser and go to 127.0.0.1:8080/builder.html to open the
Application Builder. You should see the language selection dialog.

2.4. Tutorial. Part 1. First project 11

Jam.py documentation Documentation

Select English and click OK button. The project parameters dialog box appears.

Fill out the form and click “OK”. Now you should see the project tree in the left panel.

12 Chapter 2. Getting started

Jam.py documentation Documentation

Open a new page, type 127.0.0.1:8080 in the address bar and press Enter. A new project appears with an empty menu.

2.4.2 New catalog

Let’s go back to the Application builder page and create a “Customers” catalog.

Now we select the “Catalogs” group in the project tree and and click the New button at the bottom right corner of the
page

2.4. Tutorial. Part 1. First project 13

Jam.py documentation Documentation

In the Item Editor dialog, fill in the caption and name of the new catalog

14 Chapter 2. Getting started

Jam.py documentation Documentation

and click the New button in the bottom right corner of the dialog to add a new field. The Field Editor dialog appears.
Type the caption and name of the “Firstname” field, select its type and click OK button.

2.4. Tutorial. Part 1. First project 15

Jam.py documentation Documentation

Similarly, we added the “Lastname” and “Phone” fields. When adding the “Lastname” field, we checked the Required
attribute.

16 Chapter 2. Getting started

Jam.py documentation Documentation

Now, to save the changes, click the OK button. When saving, the Application builder created the CRM_CUSTOMERS
table in the ctm.sqlite database:

Go to the Project page, refresh it and click the New button and then OK button:

2.4. Tutorial. Part 1. First project 17

Jam.py documentation Documentation

2.4.3 Lookup fields

Now we will create the “Contacts” item.

Select the “Journals” group in the project task tree and add a new journal in the same way that we created the “Cus-
tomers” catalog.

First we add the “Contact date” field of the “datetime” type and then “Notes” fields of the “text” type.

Let’s add the lookup field “Customer” field that will store a reference to a record in the “Customers” catalog.

18 Chapter 2. Getting started

Jam.py documentation Documentation

To create a lookup field, after specifying its caption and name, we need to select a lookup item. Select Lookup tab
and click the button to the right of the Lookup item input

2.4. Tutorial. Part 1. First project 19

Jam.py documentation Documentation

and double click the record to select it.

20 Chapter 2. Getting started

Jam.py documentation Documentation

The same way specify a lookup field.

2.4. Tutorial. Part 1. First project 21

Jam.py documentation Documentation

In the same way we add the “Firstname” and “Phone” lookup fields. For this fields we specify the “Customer” field as
their Master field attribute.

22 Chapter 2. Getting started

Jam.py documentation Documentation

2.4. Tutorial. Part 1. First project 23

Jam.py documentation Documentation

Click the “OK” button to save the “Contacts” item.

As you can see, there are no “FIRSTNAME” and “PHONE” fields in the “CRM_CONTACTS” table. This is due
to the fact that we have set Master field attribute of these fields to “Customer”. The “Customer” field will store a
reference to a record in the “Customers” catalog and that record have the “Fisrtname” and “Phone” fields.

When we refresh the project page and click the New button we’ll see that there is a small button to the right of the
“Customer” input.

24 Chapter 2. Getting started

Jam.py documentation Documentation

When we click on it and select a record in the “Customers” catalog the fields “Customer”, “Firstname” and “Phone”
will be filled.

2.4. Tutorial. Part 1. First project 25

Jam.py documentation Documentation

2.4.4 Lookup lists

Now we create a lookup List “Status”.

Select the “Task” node in the project tree and click the Lookup lists button.

26 Chapter 2. Getting started

Jam.py documentation Documentation

Click the New button and specify the new lookup list name and add a list of integer-text pairs:

2.4. Tutorial. Part 1. First project 27

Jam.py documentation Documentation

Save the Lookup Lists dialog and open the “Contacts” journal to add the “Status” field

28 Chapter 2. Getting started

Jam.py documentation Documentation

and set the Lookup values attribute to the “Status” lookup list:

2.4. Tutorial. Part 1. First project 29

Jam.py documentation Documentation

And finally, before saving, open the “Customer” field and set the Required and Typeahead attributes. When the
Typeahead is checked, typeahead is enabled for the lookup field,

30 Chapter 2. Getting started

Jam.py documentation Documentation

2.4. Tutorial. Part 1. First project 31

Jam.py documentation Documentation

set Default value of the “Contact date” field to “CURRENT DATETIME”

32 Chapter 2. Getting started

Jam.py documentation Documentation

and Default value of the “Status” field to “Contact” selecting them in the drop-down lists.

2.4. Tutorial. Part 1. First project 33

Jam.py documentation Documentation

2.4.5 Customizing Forms

When we refresh the project page we’ll see that fields in the table and in the edit form of the “Contacts” journal are
displayed in the order in which they were created.

34 Chapter 2. Getting started

Jam.py documentation Documentation

To change how fields are displayed in the table, click the View Form button to open the View Form Dialog Let’s
change the displayed fields using left, right, up and down buttons

2.4. Tutorial. Part 1. First project 35

Jam.py documentation Documentation

Let’s click on the button right to the Sort fields input and select the fields by which user can sort the contents of the
table by clicking in the corresponding column header of the table.

36 Chapter 2. Getting started

Jam.py documentation Documentation

To change the way the fields are displayed in the edit form click the Edit Form button to open the Edit Form Dialog

2.4. Tutorial. Part 1. First project 37

Jam.py documentation Documentation

To see the result of our work, go to the project page, refresh it and click the New button.

38 Chapter 2. Getting started

Jam.py documentation Documentation

2.4.6 Indexes

Let’s set the default sorting of records of the “Contacts” journal. To do so click the Order button:

2.4. Tutorial. Part 1. First project 39

Jam.py documentation Documentation

And now we create a corresponding index for the “Contacts” journal database table. Click the Indices button to open
Indices Dialog and then click the New button and specify the index:

40 Chapter 2. Getting started

Jam.py documentation Documentation

2.4.7 Filters

Filters are used to select records from the database table according to the specified criteria.

Click the Filters button to open Filters Dialog

2.4. Tutorial. Part 1. First project 41

Jam.py documentation Documentation

Now click the New button and fill out the following form:

42 Chapter 2. Getting started

Jam.py documentation Documentation

Similarly, we created other filters:

2.4. Tutorial. Part 1. First project 43

Jam.py documentation Documentation

When we refresh the project page, the Filters button will appear in the header of the “Contacts” form. Clicking this
button opens the “Filters” dialog box:

44 Chapter 2. Getting started

Jam.py documentation Documentation

2.5 Tutorial. Part 2. File and image fields

In this part we will demonstrate how to work with files and images in Jam.py.

2.5.1 Adding Image field

Let’s select the “Customers” catalog, Double-click it to open the Item Editor Dialog and add an image field “Photo”:

2.5. Tutorial. Part 2. File and image fields 45

Jam.py documentation Documentation

Now refresh the project page, click the Customers menu item and open the edit form.

46 Chapter 2. Getting started

Jam.py documentation Documentation

Double-click the image in the editing form to select an image from the Open File dialog box.

2.5. Tutorial. Part 2. File and image fields 47

Jam.py documentation Documentation

48 Chapter 2. Getting started

Jam.py documentation Documentation

Note: To clear an image, hold down the Ctrl key and double-click the image.

Let’s open the Field Editor Dialog in Application Builder and set View width to 120 and Edit width to 314 on the
Interface tab.

2.5. Tutorial. Part 2. File and image fields 49

Jam.py documentation Documentation

Note: You can set the image placehodler by double-clicking on it.

In the View Form Dialog we set Row lines to 4 and the width of the “Photo” field to 120.

50 Chapter 2. Getting started

Jam.py documentation Documentation

Now on the project page we will have:

2.5. Tutorial. Part 2. File and image fields 51

Jam.py documentation Documentation

2.5.2 Capturing image from camera

You can capture the image from the camera. To do so check the Capture from camera check box. In this case when
the image is not set the video from camera will be displayed instead of the image placeholder.

Double-click the video to capture the image. To clear an image, hold down the Ctrl key and double-click the image,
after that the video will be displayed.

2.5.3 Adding file field

Now we add a field that will store an appendix file to the “Contacts” journal.

52 Chapter 2. Getting started

Jam.py documentation Documentation

This field will be displayed in the editing form as follows:

2.5. Tutorial. Part 2. File and image fields 53

Jam.py documentation Documentation

The field input have three buttons on the right - to upload, to download and to open a file.

Let’s open the Field Editor Dialog in Application Builder and uncheck the Download btn check box and set Accept
attribute to ‘.pdf’.

54 Chapter 2. Getting started

Jam.py documentation Documentation

Let’s refresh the project page, open the “Contacts” edit form and upload a file by clicking the upload button:

2.5. Tutorial. Part 2. File and image fields 55

Jam.py documentation Documentation

Now we can open a file in the browser by clicking on the open button.

56 Chapter 2. Getting started

Jam.py documentation Documentation

2.5. Tutorial. Part 2. File and image fields 57

Jam.py documentation Documentation

Note: Files and images are stored in the static/files folder on the server.

You can limit the size of files that can be uploaded to the server by setting Max content length attribute in the project
parameters.

2.6 Tutorial. Part 3. Details

In this part of the tutorial we will explain how to work with details.

Let’s select the “Details” group in the project tree and and click the New button at the bottom right corner of the page

In the Item Editor dialog box, we will name the new item “To do list” and add the two fields “Created” and “To do” in
the same way as in the previous tutorial:

58 Chapter 2. Getting started

Jam.py documentation Documentation

After saving the “To do list”, select the “Contacts” journal and click the Details button in the right pane to open the
Details Dialog. Click the right arrow button to add the “To do list” to the “Contacts” details and the OK button to save
changes.

2.6. Tutorial. Part 3. Details 59

Jam.py documentation Documentation

A new “To do list” item will be created as a child of the “Contacts” journal.

Select the “Contacts” journal again and click the Edit form button to open the Edit Form Dialog. Select Form tab,
click the button to the right of the Edit details input and select the “To do list” check box.

60 Chapter 2. Getting started

Jam.py documentation Documentation

Let’s update the project page and dblclick on the contact. Now we can add items to the to-do list of the contact.

Click the Groups node in the project tree, dblclick the Details row and set Visible attribute to true.

2.6. Tutorial. Part 3. Details 61

Jam.py documentation Documentation

When we refresh the project page, we will see the “To do list” item in the main menu. Click on it to see the to do list
of all contacts.

62 Chapter 2. Getting started

Jam.py documentation Documentation

Select the “Contacts” journal again and click the View form button to open the View Form Dialog. Select Form tab,
click the button to the right of the View detail input and select the “To do list” check box.

2.6. Tutorial. Part 3. Details 63

Jam.py documentation Documentation

In the project page will see that the to-do list changes when the contact changes.

64 Chapter 2. Getting started

Jam.py documentation Documentation

2.7 Jam.py deployment with Apache and mod_wsgi

Once you’ve got mod_wsgi installed and activated, edit your Apache server’s httpd.conf file and add the following.
If you are using a version of Apache older than 2.4, replace Require all granted with Allow from all and also add
the line Order deny,allow above it.

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py
WSGIPythonPath /path/to/mysite.com

<Directory /path/to/mysite.com/mysite>
<Files wsgi.py>
Require all granted
</Files>
</Directory>

Alias /static/ /path/to/mysite.com/static/

<Directory /path/to/mysite.com/static>
Require all granted
</Directory>

The first bit in the WSGIScriptAlias line is the base URL path you want to serve your application at (/ indicates
the root url), and the second is the location of a “WSGI file” – see below – on your system, usually inside of your
project package (mysite in this example). This tells Apache to serve any request below the given URL using the
WSGI application defined in that file.

2.7. Jam.py deployment with Apache and mod_wsgi 65

Jam.py documentation Documentation

The WSGIPythonPath line ensures that your project package is available for import on the Python path; in other
words, that import mysite works.

The <Directory> piece just ensures that Apache can access your wsgi.py file.

The next lines ensure that anything in the /static/ URL space is explicitly served as a static files.

2.7.1 See also

See the additional information on the deployment in the How to deploy

66 Chapter 2. Getting started

CHAPTER 3

Jam.py programming

Here, the basic concepts of Jam.py programming will be explained.

3.1 Task tree

All objects of the framework represent a tree of objects. These object are called items.

All items of the tree have common ancestor class AbstractItem (client reference / server reference) and common
attributes:.

• ID - unique in the framework ID of the item

• owner - immediate parent and owner of the item

• task - root of the task tree

• items - list of child items

• item_type - type of the item

• item_name - the name of the item that will be used in programming code to get access to the item

• item_caption - the item name that appears to users

At the root of the tree is the task item.

The task contains group items. There are three types of groups that have the following values of the item_type
attribute:

• “items” - these groups contain items with “item” item_type, that can have associated database table.

• “details” - such groups also contain items that can have associated database tables, but they can be used to create
details for other items (see Details).

• “reports” - these groups contain reports - items with “report” item_type, that are used to create reports.

You can create your own groups.

67

Jam.py documentation Documentation

Items that can have associated database table can own details, that are used to store records that belong to a record of
the master.

For example the task tree of the Demo project is:

/demo/
catalogs/

customers
tracks
albums
artists
genres
media_types

journals/
invoices/

invoice_table
details/

invoice_table
reports/

invoice
purchases_report
customers_report

At the root of the task tree is a task with the item_name demo. It has four groups: catalogs, journals, details
and reports. The catalogs, journals groups have item_type “items”. The items they own are wrappers over
the corresponding database tables. There is one detail item with item_name invoice_table, that also has it’s own
database table, and three reports in the reports group.

The invoices journal has the invoice_table detail, which keeps a list of tracks in an customer’s invoice. So there are
two items with the same name “invoice_table” (detail_item and detail). They share the same database table.

Every item is an attribute of its owner and all items, tables and reports are attributes the task as well (they all have a
unique item_name).

A task is a global object on the client. To access it, just type task anywhere in the code.

On the server, the task is not global. Jam.py is an event-driven environment. Each event has as a parameter the item
(or field) that triggered the event. Functions defined in the server module of an item that can be executed from the
client module using the server method have the corresponding item as the first parameter as well.

Knowing an item, we can access any other item of the task tree. For example to get access to the customers catalog
we can write

def on_apply(item, delta, params):
customers = item.task.catalogs.customers.copy()

or just

def on_apply(item, delta, params):
customers = item.task.customers.copy()

The hierarchical structure of the project is one of the bases of the DRY (don’t repeat yourself) principle of the frame-
work.

For example, some methods of the items, when executed, successively generate events for the task, group and the item.

This way we can define a basic behavior for all items in the event handler of the task, that can be expanded in the event
handler of the group, and finally, if necessary, can be specified in the event handler of the item itself. For more details
see Form events

68 Chapter 3. Jam.py programming

Jam.py documentation Documentation

3.1.1 Video

The Task tree video tutorial demonstrates the task tree using Demo project

3.2 Workflow

In the Jam.py framework, two tasks work at the same time: the Application builder and the Project. Each of them
represents a tree of objects - there is the Application builder task tree and the Project task tree. Therefore, before
considering the Jam.py workflow, you need to familiarize yourself with the concept of the task tree.

The the Jam.py workflow is the following:

• When server.py is run it creates WSGI application that, in its own turn, creates the Application builder task tree.

• The Project task tree is created on the server by Application builder after the server receives first request from
the Project client. To do so, the Application builder uses metadata stored in admin.sqlite database in the root
folder of the project. After creating a task tree the server application triggers the on_created event, that can be
used to initialize the server task tree.

• When an application on the client (Application builder or Project) is first run in the browser (after builder.
html or index.html have been loaded) the empty task object is built that sends to the server a request to
initialize itself.

• If the project safe mode parameter is set, the framework checks if a user is logged, before executing any request.
If not, then the application on the client creates a login form, and after the user inputs its login and password,
the client task sends the server a request to login.

• After successful login or if the project safe mode parameter is not set, the server sends the client information
about the requested task. The task on the client builds its tree, based on this information, assigns event handlers
to its objects and executes on_page_loaded event handler.

• In this event handler a developer should attach JQuery event handler functions to HTML elements of the DOM,
defined in the index.html file. In these functions a developer can use methods of items of the task tree to
perform some specific tasks. These methods, when executed, trigger different events in which other methods
could be called and so on. See Client side programming.

• Items of the task tree, that have corresponding database tables, have methods to read and write data in the server
database. See Data programming.

• The report items generate the reports on the server, based on the LibrOffice templates. See Programming reports.

• All the items, whose methods generate a request to the server, do it the following way: they call the method of
the task that sends to the server the ID of the task, the ID the item, the type of the request and its parameters.
The server on receiving the request, based on passed IDs, finds the task (it can be Project task or Application
builder task) and the item on the server, executes the corresponding method with passed parameters and returns
the result of the execution to the client. These server methods could trigger their own events that can override
the default behavior. See Server side programming

3.2.1 Video

Form events and Client-server interactions video tutorials illustrate the workflow of Jam.py project.

3.2. Workflow 69

https://youtu.be/hsSKqEh6vL4
https://youtu.be/DY463lcv0R4
https://youtu.be/nLOhdA2FX0I

Jam.py documentation Documentation

3.3 Working with modules

For every item of the project task tree a developer can write code that will be executed on the client or server. In
Application builder for every item there is two upper-right buttons Client module and Server module. Clicking on
these will open the code editor.

Every item has a predefined set of events that could be triggered by application. An event is a function defined in the
module of an item that starts with the on_ prefix. All published events are listed in the Events tab of the information
pane of the code editor

In the code editor the developer can write code for these events as well as define some functions.

For example the following code means that immediately after adding a new record to the Invoices journal of the Demo
project, the value of the invoicedate field will be equal to the current date.

function on_after_append(item) {
item.invoicedate.value = new Date();

}

Note: These events and functions became attributes of the item and could be accessed anywhere in the project code.

For example, the following code defined in the item client module will execute on_edit_form_created event handler
defined in the Customers item for this item.

function on_edit_form_created(item) {
task.customers.on_edit_form_created(item);

}

3.4 Client side programming

3.4.1 Index.html

When user opens a Jam.py application in a Web browser, the browser first loads the index.html file. This file is located
in the root directory of a project.

70 Chapter 3. Jam.py programming

Jam.py documentation Documentation

It is the usual html file containing links to css and js files, that client application is using. The files that start with jam
are located in the jam folder of the Jam.py package directory on the server.

For example

<link href="jam/css/jam.css" rel="stylesheet">

If needed, other files can be added here. For example some charting library. It is better to place them in the js and css
folders of the static directory of the project.

For example

<script src="static/js/Chart.min.js"></script>

The index.html body tag have a div with class templates, that contains html templates of the project forms. See
Forms and Form templates. for details.

At the end of the file there is a following script:

<script>
$(document).ready(function(){

task.load()
});

</script>

In this script the load method of the task, that has been created when jam.js file was loaded, is called that loads
information about the task tree from the server and, based on this information, builds its tree, loads modules, assigns
event handlers to its items and triggers on_page_loaded event. See Initializing application

3.4. Client side programming 71

Jam.py documentation Documentation

3.4.2 Initializing application

The on_page_loaded event is the first event triggered by an application on the client.

The new project uses on_page_loaded event handler to dynamically build the application’s main menu and attach the
on click event handler to menu items using JQuery.

function on_page_loaded(task) {

$("title").text(task.item_caption);
$("#title").text(task.item_caption);

if (task.safe_mode) {
$("#user-info").text(task.user_info.role_name + ' ' + task.user_info.user_

→˓name);
$('#log-out')
.show()
.click(function(e) {

e.preventDefault();
task.logout();

});
}

if (task.full_width) {
$('#container').removeClass('container').addClass('container-fluid');

}
$('#container').show();

task.create_menu($("#menu"), $("#content"), {view_first: true});

}

This event handler uses JQuery to select elements from the index.html to set their attributes and assign events.

<div id="container" class="container" style="display: none">
<div class="row-fluid">

<div class="span6">
<h3 id="title" class="muted"></h3>

</div>
<div class="span6 logging-info">

Log out

</div>
</div>
<div class="container">

<div id="taskmenu" class="navbar">
<div class="navbar-inner">

<ul id="menu" class="nav">

</div>
</div>

</div>
<div id="content">
</div>

</div>

Finally, the create_menu method of the task is called to dynamically create the main project menu.

72 Chapter 3. Jam.py programming

Jam.py documentation Documentation

3.4.3 Forms

One of the key concepts of the framework is the concept of form.

When the user clicks the menu item of the main menu, the view method of the corresponding item is executed, which
creates the view form.

This view form can have the New and Edit buttons, clicking on which the insert_record and edit_record methods
will be executed. These methods create an item edit form.

Forms are based on HTML form templates that determine their layout. Form templates are defined in the Index.html
file, located in the root folder of the project.

The application already has default templates for viewing and editing data, for specifying filters and report parameters.

For example, all edit forms of the Demo project use the following html template:

<div class="default-edit">
<div class="form-body">

<div class="edit-body"></div>
<div class="edit-detail"></div>

</div>
<div class="form-footer">

<button type="button" id="ok-btn" class="btn expanded-btn">
<i class="icon-ok"></i> OK<small class="muted"> [Ctrl+Enter]</small>

</button>
<button type="button" id="cancel-btn" class="btn expanded-btn">

<i class="icon-remove"></i> Cancel
</button>

</div>
</div>

You can define your own form templates to create your own custom forms. See Form templates

When some method creates a form the application finds corresponding html template.

If container (a Jquery object) parameter is specified, the method empties it and appends the html template to it,
otherwise, it creates an empty modal form and appends the template to the form.

After this it assigns item’s prefix_form attribute to the template, triggers an on_prefix_form_created
events, shows the form and triggers on_prefix_form_shown events, where prefix is a type of the form (view,
edit, filter, param). See Form events for details.

Below is an example of the on_edit_form_created event handler of the task:

function on_edit_form_created(item) {
item.edit_form.find("#ok-btn").on('click.task', function() { item.apply_record() }

→˓);
item.edit_form.find("#cancel-btn").on('click.task', function(e) { item.cancel_

→˓edit(e) });

if (!item.master && item.owner.on_edit_form_created) {
item.owner.on_edit_form_created(item);

}
if (item.on_edit_form_created) {

item.on_edit_form_created(item);
}

item.create_inputs(item.edit_form.find(".edit-body"));
item.create_detail_views(item.edit_form.find(".edit-detail"));

(continues on next page)

3.4. Client side programming 73

Jam.py documentation Documentation

(continued from previous page)

return true;
}

In this example, the the find method of JQuery is used to to find elements on the form.

First, we assign a JQuery click event to OK and Cancel buttons, so cancel_edit and apply_record methods will be
executed when user clicks on the buttons. This methods cancel or apply changes made to the record respectively and
call the close_edit_form method to close the form.

Then, if item is not a detail and has an event handler on_edit_form_created, defined in the owner’s client
module, this event handler is executed.

After that, if item has an event handler on_edit_form_created, defined in the item’s client module, this event
handler is executed.

In these event handlers some additional actions could be executed. For example you can assign click events to buttons
or some other elements contained in your edit form template, change edit_options, create tables using the create_table
method and so on.

Then the create_inputs method is called to create inputs in the element with class “edit-body”

Finally, create_detail_views method is called to create details in the element with class “edit-detail”

Note: If some elements are missing in the form template, an exception will not be raised.

The close_prefix_form, where prefix is the type of the form, closes the form of this type. But before form
is closed the on_prefix_form_close_query and on_prefix_form_closed events are triggered. After
form is closed it is removed from the DOM.

3.4.4 Form templates

Form templates of the project are located in the div with the templates class inside the body tag in the Index.html
file.

When load method is executed, it cuts out the div with templates class from the body and stores it in the templates
attribute as a JQuery object.

To add a form template for an item you should add a div with the name-suffix class in the templates div, where
name is the item_name of the item and suffix is the form type: view, edit, filter, param.

For example:

<div class="invoices-edit">
...

</div>

is an edit form template of the invoices item.

For a detail before its name there should be the name of its master, separated by a hyphen:

<div class="invoices-invoice_table-edit">
...

</div>

If an item doesn’t have a form template then the form template of its owner, if defined, will be used.

So the template

74 Chapter 3. Jam.py programming

Jam.py documentation Documentation

<div class="journals-edit">
...

</div>

will be used to create edit forms of items that Journals group owns and that do not have its own edit form template.

If, after searching this way, no template was found for an item, the template with the default-suffix class will
be used to create a form.

So the template

<div class="default-edit">
...

</div>

will be used to create edit forms for items that have no templates defined for them and their owners.

When a new project is created the index.html already contains such templates.

Below is an example of default edit form template from index.html file:

<div class="default-edit">
<div class="form-body">

<div class="edit-body"></div>
<div class="edit-detail"></div>

</div>
<div class="form-footer">

<button type="button" id="ok-btn" class="btn expanded-btn">
<i class="icon-ok"></i> OK<small class="muted"> [Ctrl+Enter]</small>

</button>
<button type="button" id="cancel-btn" class="btn expanded-btn">

<i class="icon-remove"></i> Cancel
</button>

</div>
</div>

There are more template examples in the Form examples section.

3.4.5 Form events

After the form is created and the HTML form template is added to the DOM, the application triggers the following
form events during the life cycle of the form:

• on_view_form_created - the event is triggered when the form has been created but not shown yet

• on_view_form_shown -the event is triggered when the the form has been shown

• on_view_form_close_query - the event is triggered when an attempt is made to close the form

• on_view_form_closed - the event is triggered when the form has been closed

• on_view_form_keydown - the event is triggered when the keydown event occurs for the form

• on_view_form_keyup - the event is triggered when the keyup event occurs for the form

For other form types - edit, filter and param, replace ‘view’ with the form type, for example
on_edit_form_created for edit form.

We will first explain how to use the on_view_form_created event.

3.4. Client side programming 75

Jam.py documentation Documentation

When the user clicks on menu item the application executes the view method of corresponding task tree item, this
method creates a form using its HTML form template and triggers first the on_view_form_created event of the task.

When you create a new project, the task client module already contains the code, including the on_view_form_created
event handler. This event handler is executed each time the view form is created and defines the default behavior of
view forms.

You can open the task client module to see this event handler. If you need to change the default behavior for all view
forms of the project, you should do it here.

Below we describe the major steps it performs:

• Initializes the view_form and table_options that are used by some methods when view form and table are created.

• Assigns JQuery event handlers for default buttons to methods of the item, depending on the user rights. In the
example below the delete button is. Initialized:

if (item.can_delete()) {
item.view_form.find("#delete-btn").on('click.task', function(e) {

e.preventDefault();
item.delete_record();

});
}
else {

item.view_form.find("#delete-btn").prop("disabled", true);
}

• Executes the on_view_form_created event handler of the item group and. on_view_form_created of the item if
they are defined:

if (!item.master && item.owner.on_view_form_created) {
item.owner.on_view_form_created(item);

}

if (item.on_view_form_created) {
item.on_view_form_created(item);

}

• Creates a table to display the item data and tables for details if they have been specified by calling
create_view_tables method

• Executes open method, that gets the item dataset from the server.

• Finally returns true to prevent calling of the on_view_form_created of the owner group and the item
because the were already called see the _process_event method below.

After we initialized buttons and before creating tables we call the on_view_form_created event handler of the
item itself.

For example, in the client module of the tracks item of the demo app the following on_view_form_created event
handler is defined. In it we change the height attribute of the table_options , create the copy of the invoice_table set its
attributes and call its create_table method that creates a table to display its data.

function on_view_form_created(item) {
item.table_options.height -= 200;
item.invoice_table = task.invoice_table.copy();
item.invoice_table.paginate = false;
item.invoice_table.create_table(item.view_form.find('.view-detail'), {

height: 200,
summary_fields: ['date', 'total'],

(continues on next page)

76 Chapter 3. Jam.py programming

Jam.py documentation Documentation

(continued from previous page)

});
item.alert('Double-click the record in the bottom table to see track sales.');

}

The module also has the on_after_scroll event handler that will be executed when the user moves to the other track
and will get the sales of this track.

This example explains the principle of form events usage.

The order of triggering of events depends on the type of event.

There are three type of

The order in which events are generated depends on the type of event.

Close query events

When user tries to close the form the on_close_query event is first triggered (if defined) for the item.

If the event handler returns true the application closes the form, else if the event handler returns false the application
leaves the form open, otherwise the on_close_query event is triggered (if defined) the same way for the item group
and then for the task.

For example, by default there is the on_edit_form_close_query event handler in the task client module:

function on_edit_form_close_query(item) {
var result = true;
if (!item.virtual_table && item.is_changing()) {

if (item.is_modified()) {
item.yes_no_cancel(task.language.save_changes,

function() {
item.apply_record();

},
function() {

item.cancel_edit();
}

);
result = false;

}
else {

item.cancel_edit();
}

}
return result;

}

This code checks whether the record has been modified and then opens “Yes No Cancel” dialog.

If we want to close the form without this dialog we can defined the following event handler in the client module of the
item:

function on_edit_form_close_query(item) {
item.cancel()
return true;

}

3.4. Client side programming 77

Jam.py documentation Documentation

Keydown, keyup events

These events are triggered the same way as Close query events, starting from the item, but if the event handler returns
true, the event handlers of the group and task are not executed.

For example, by default there is the on_edit_form_keyup event handler in the task client module:

function on_edit_form_keyup(item, event) {
if (event.keyCode === 13 && event.ctrlKey === true){

item.edit_form.find("#ok-btn").focus();
item.apply_record();

}
}

This code saves the changes of the record to the database table when user presses Ctrl+Enter.

Suppose we want to save the changes when user presses Enter. Then we write the following event handler in the item
client module:

function on_edit_form_keyup(item, event) {
if (event.keyCode === 13){

item.edit_form.find("#ok-btn").focus();
item.apply_record();
return true;

}
}

In this case the event handler of the task won’t be called when the user press Enter.

All other events

For other events, the event handler of the task is called first, if it doesn’t return true, the event handler of the group is
executed if it doesn’t return true the event handler of the item is called.

This mechanism is implemented the _process_event method of the Item class in the jam.js module.

_process_event: function(form_type, event_type, e) {
var event = 'on_' + form_type + '_form_' + event_type,

can_close;
if (event_type === 'close_query') {

if (this[event]) {
can_close = this[event].call(this, this);

}
if (!this.master && can_close === undefined && this.owner[event]) {

can_close = this.owner[event].call(this, this);
}
if (can_close === undefined && this.task[event]) {

can_close = this.task[event].call(this, this);
}
return can_close;

}
else if (event_type === 'keyup' || event_type === 'keydown') {

if (this[event]) {
if (this[event].call(this, this, e)) return;

}
if (!this.master && this.owner[event]) {

if (this.owner[event].call(this, this, e)) return;
(continues on next page)

78 Chapter 3. Jam.py programming

Jam.py documentation Documentation

(continued from previous page)

}
if (this.task[event]) {

if (this.task[event].call(this, this, e)) return;
}

}
else {

if (this.task[event]) {
if (this.task[event].call(this, this)) return;

}
if (!this.master && this.owner[event]) {

if (this.owner[event].call(this, this)) return;
}
if (this[event]) {

if (this[event].call(this, this)) return;
}

}
}

3.4.6 Form options

For each type of form an item has an attribute that controls the modal form behavior:

• view_options

• edit_options

• filter_options

• param_options

This is an object that has the following attributes, specifing parameters of the modal form:

• width - the width of the modal form, the default value is 560 px,

• title - the title of the modal form, the default value is the value of a item_caption attribute,

• close_button - if true, the close button will be created in the upper-right corner of the form, the default
value is true,

• close_caption - if true and close_button is true, will display ‘Close - [Esc]’ near the button

• close_on_escape - if true, pressing on the Escape key will trigger the corresponding close_form method.

• close_focusout - if true, the corresponding close_form method will be called when a form loses focus

• template_class - if specified, the div with this class will be searched in the task templates attribute and
used as a form html template when creating a form

The edit_options has a fields attribute, that specify a list of field names that the create_inputs method will use, if
fields attribute of its options parameter is not specified, the default value is a list of field names set in the Edit
Form Dialog in the Application builder.

The view_options has a fields attribute, that specify a list of field names that the create_table method will use, if
fields attribute of its options parameter is not specified, the default value is a list of field names set in the View
Form Dialog in the Application builder.

The width of the modal form, created in the following example, will be 700 px.

3.4. Client side programming 79

Jam.py documentation Documentation

function on_edit_form_created(item) {
item.edit_options.width = 700;

}

3.4.7 Data-aware controls

To create a table to display an item’s dataset use create_table method:

item.create_table(item.view_form.find(".view-table"), table_options);

To create data controls to edit fields of the of the dataset use create_inputs method:

item.create_inputs(item.edit_form.find(".edit-body"), input_options);

These methods have two parameters - container and options. The first parameter is a JQuery container in which the
controls will be placed. The second - options, satisfying the way the data will be displayed. For detailed information
see their API reference.

The methods are usually used in the on_view_form_created and on_edit_form_created event handlers.

All visual controls (tables, inputs, checkboxes), created by this methods are data-aware. This means that they imme-
diately reflect any changes of the item dataset.

Sometimes it is necessary to disable this interaction. To do so use the disable_controls and enable_controls methods
respectively.

Videos

Data aware controls

3.5 Data programming

3.5.1 Dataset

Jam.py framework uses a dataset concept that is very close to datasets of Embarcadero Delphi.

Note: There are other ways to read and modify the database data. You can use the connect method of the task to get a
connection from the connection pool and use the connection to get access to the database using Python Database API.

All items with item_type “item” or “table” as well as their details (see Task tree) can access data from associated
tables from the project database and write changes to it. They all are objects of the Item class

• Item class (on the client)

• Item class (on the server)

Both of these classes have the same attributes, methods, and events associated with the data handling.

To get a dataset (a set of records) from the project dataset table, use the open method. This method, based on parame-
ters, generates an SQL query to get a dataset.

After dataset is opened, the application can navigate it, change its records or insert new ones and write changes to the
item’s database table.

80 Chapter 3. Jam.py programming

https://youtu.be/fMTq8P4XdGw
https://en.wikipedia.org/wiki/Delphi_(programming_language)

Jam.py documentation Documentation

For example, the following functions will set support_rep_id field values to the values of the id field on the client and
server respectively:

function set_support_id(customers) {
customers.open();
while (!customers.eof()) {

customers.edit();
customers.support_rep_id.value = customers.id.value;
customers.post();
customers.next();

}
customers.apply();

}

def set_support_id(customers):
customers.open()
while not customers.eof():

customers.edit()
customers.support_rep_id.value = customers.id.value
customers.post()
customers.next()

customers.apply();

These functions get the customers item as a parameter. Then the open method is used to get a list of records from the
customers table and each record is modified. In the end the changes are saved in the database table, using the apply
method (see Modifying datasets).

Note: There is a shorter way to navigate a dataset (see Navigating datasets). For example, in python, the following
loops are equivalent:

while not customers.eof():
print customers.firstname.value
customers.next()

for c in customers:
print c.firstname.value

Videos

Datasets and Datasets Part 2 demonstrate almost all methods of working with datasets on specific examples

3.5.2 Navigating datasets

Each active dataset has a cursor, or pointer, to the current row in the dataset. The current row in a dataset is the
one whose values can be manipulated by edit, insert, and delete methods, and the one, whose field values,
data-aware controls on a form currently show.

You can change the current row by moving the cursor to point at a different row. The following table lists methods
you can use in application code to move to different records:

3.5. Data programming 81

https://youtu.be/gHTYj7h9ljI
https://youtu.be/1bUGmgBfrNw

Jam.py documentation Documentation

Client
method

Server
method

Description

first first Moves the cursor to the first row in an item dataset.
last last Moves the cursor to the last row in an item dataset.
next next Moves the cursor to the next row in an item dataset.
prior prior Moves the cursor to the previous row in an item dataset.

In addition to these methods, the following table describes two methods that provide useful information when iterating
through the records in a dataset:

Client
method

Server
method

Description

bof bof If the method returns true, the cursor is at the first row in the dataset, otherwise, the cursor
is not known to be at the first row in the dataset.

eof bof If the method returns true, the cursor is at the last row in the dataset, otherwise, the cursor
is not known to be at the last row in the dataset.

Each time the cursor move to another record in the dataset the following events are triggered:

Client
event

Server
event

Description

on_before_scrollon_before_scrollOccurs before an application scrolls from one record to another.
on_after_scrollon_after_scrollOccurs after an application scrolls from one record to another.

Using this methods we can navigate a dataset. For example,

on the client:

function get_customers(customers) {
customers.open();
while (!customers.eof()) {

console.log(customers.firstname.value, customers.lastname.value);
customers.next();

}
}

on the server:

def get_customers(customers):
customers.open()
while not customers.eof():

print customers.firstname.value, customers.lastname.value
customers.next()

Shorter ways to navigate dataset

There is the each method on the client that can be used to navigate a dataset:

For example:

function get_customers(customers) {
customers.open();

(continues on next page)

82 Chapter 3. Jam.py programming

Jam.py documentation Documentation

(continued from previous page)

customers.each(function(c) {
if (c.rec_no === 10) {

return false;
}
console.log(c.rec_no, c.firstname.value, c.lastname.value);

});
}

On the server we can iterate dataset rows the following way:

def get_customers(customers):
customers.open()
for c in customers:

if c.rec_no == 10:
break

print c.firstname.value, c.lastname.value

Both functions will output customer names for the first 10 records in the dataset.

In both cases the c and customers are pointers to the same object.

3.5.3 Modifying datasets

When an application opens an item dataset, the dataset automatically enters browse state. Browsing enables you to
view records in a dataset, but you cannot edit records or insert new records. You mainly use browse state to scroll from
record to record in a dataset.

For more information about scrolling from record to record, see Navigating datasets.

From browse state all other dataset states can be set. For example, calling the insert or append methods changes its
state from browse to insert.

Two methods can return a dataset to browse state. Cancel ends the current edit, insert, and returns a dataset to browse
state. Post writes changes to the dataset, and if successful, also returns a dataset to browse state. If this operations
fail, the current state remains unchanged.

To check an item dataset state use item_state attribute or is_new is_edited or is_changing methods:

Client Server Description
item_state item_state Indicates the current operating state of the item dataset.
is_new is_new Returns true if the item dataset is in insert state.
is_edited is_edited Returns true if the item dataset is in edit state.
is_changingis_changingReturns true if the item dataset is in insert or edit state.

You can use the following item methods to insert, update, and delete data in dataset:

Client Server Description
edit edit Puts the item dataset into edit state.
append append Appends a record to the end of the dataset, and puts the dataset in insert state.
insert insert Inserts a record at the beginning of the dataset, and puts the dataset in insert state.
post post Saves the new or altered record, and puts the dataset in browse state.
cancel cancel Cancels the current operation and puts the dataset in browse state.
delete delete Deletes the current record and puts the dataset in browse state.

3.5. Data programming 83

Jam.py documentation Documentation

All changes made to the dataset are stored in memory, the item records changes to change log. Thus, after all the
changes have been made, they can be stored in the associated database table by calling the apply method. The
apply method generates and executes SQL query to save changes to the database.

Client Server Description
log_changes log_changes Indicates whether to log data changes.
apply apply Sends all updated, inserted, and deleted records from the item dataset to the server

for writing to the database.

3.5.4 Fields

All items, working with database table data have a fields attribute - a list of field objects, which are used to represent
fields in item’s table records.

Every field have the following attributes:

Client Server Description
owner owner The item that owns this field.
field_name field_name The name of the field that will be used in programming code to get access to the field object.
field_captionfield_captionThe name of the field that appears to users.
field_type field_type Type of the field, one of the following values: text, integer, float, currency, date, date-

time, boolean, blob.
field_size field_size A size of the field with type text
required required Specifies whether a nonblank value for a field is required.

To get access to the item dataset data, the Field class have the following properties:

Client Server Description
value value Use this property to get or set the field’s value of the current record. When reading the

value is converted to the type of the field. So for fields of type integer, float and currency,
if value for this field in database table record is NULL, value of this property is 0. To get
unconverted value use the raw_value property.

text text Use this property to get or set the value of the field as text.
lookup_valuelookup_valueUse this property to get or set lookup value, see Lookup fields.
lookup_textlookup_textUse this property to get or set the lookup value of the field as text, see Lookup fields.
display_textdisplay_textRepresents the field’s value as it is displayed in data-aware controls. When the field is a

lookup field it’s value is the lookup_text value, otherwise it is the text value, with regard of
project locale parameters. This behavior can be overridden by the on_field_get_text event
handler of the item that owns the field.

raw_value raw_value Use this property to get field value of the current record as it is stored in database. No
conversion is used.

In addition every field is an attribute of the item that owns it. So, to get access to a field of an item use the following
syntax: item.field_name

invoices.total.value

invoices.total is the reference to the Total field of the Invoices item and the invoices.total.value is
the value of this field

Below are the values of the attributes of the fields of the invoices item in the Demo project

84 Chapter 3. Jam.py programming

Jam.py documentation Documentation

customer integer
value: 2
text: 2
lookup_value: Köhler
lookup_text: Köhler
display_text: Leonie Köhler

firstname integer
value: 2
text: 2
lookup_value: Leonie
lookup_text: Leonie
display_text: Leonie

billing_address integer
value: 2
text: 2
lookup_value: Theodor-Heuss-Straße 34
lookup_text: Theodor-Heuss-Straße 34
display_text: Theodor-Heuss-Straße 34

id integer
value: 1
text: 1
lookup_value: None
lookup_text:
display_text: 1

date date
value: 2014-01-01
text: 01/01/2014
lookup_value: None
lookup_text:
display_text: 01/01/2014

total currency
value: 2.08
text: $2.08
lookup_value: None
lookup_text:
display_text: $2.08

3.5.5 Common fields

Items that have access to the database data can have common fields. They are defined in the group they belong to:

3.5. Data programming 85

Jam.py documentation Documentation

Here two fields are defined: id and deleted.

The id field is set as a primary key and will store a unique identifier for each record in the database table. This value
is automatically generated by the framework when inserting a new record into the table.

The deleted field is set as a deletion flag. When the ‘Soft delete’ check-box is checked in the Item Editor Dialog, the
delete method does not erase a record physically from the table, but uses this field to mark the record as deleted. The
open method takes this into account when an SQL query is generated to get records from the database table.

For detail groups two more fields could be defined — master_id and master_rec_id. They are used to link detail
records to the a record in master table, see Details.

3.5.6 Lookup fields

A lookup field can display a user friendly value that is bound to another value in the another table or value list. For
example, the lookup field can display a customer name that is bound to a respective customer ID number in another
item’s table or list.

When entering a value in the lookup field the user chooses from a list of values. This can make data entry quicker and
more accurate.

The two types of lookup fields that you can create are a lookup field, based on lookup item, and a value list.

Lookup item based lookup field

In the framework you can add a field to an item to look up information in another item’s table. For example in the
Demo application Albums catalog there is the Artist lookup field.

86 Chapter 3. Jam.py programming

Jam.py documentation Documentation

To set the value of the field the user must click on the button to the right of the field input and select a record from the
‘’Artists” catalog that will appear. Then the value of this field will be the id of the record. The other way to set value
of the field is to use typeahead, if Typeahead flag is set in the Field Editor Dialog:

3.5. Data programming 87

Jam.py documentation Documentation

For such fields Lookup item and Lookup field must be specified in the Field Editor Dialog:

The SQL query that is generated on the server, when the open method is called and expanded parameter is set to
true (default), uses JOIN clause to get lookup values for such fields. Thus each such field has a pair of values: the first
value stores a reference to a record in the lookup item table (the value of its primary key field), and the second value
have the value of the lookup field in this record.

To get access to this values use the following properties of lookup fields:

Client Server Description
value value A value, that is stored in the item table, that is a reference to a record in the lookup item

table.
lookup_valuelookup_valueA value of the lookup field in the lookup item table.

Sometimes there is a need to have two or more values from the same record in the lookup item table. For example, the
“”Invoices” journal in Demo has several lookup fields (“Customer”, “Billing Address”, “Billing City”, and so on) that
have information about a customer, all stored in one record in the “Customers” item table, describing that customer.
In order to avoid creating unnecessary fields in the “Invoices” item table, storing the same reference to a record, and
creating JOIN s for each such field, all lookup fields except “Customers” have Master field value pointing to the
“Customers” field. These fields don’t have corresponding fields in the items’ underlying database table. Their value
property is always equal to the value property of the master field and the SQL query that is generated on the server,
when the open method is called, uses one JOIN clause for all this fields.

88 Chapter 3. Jam.py programming

Jam.py documentation Documentation

When user clicks on the button to the right of the field input or uses typeahead, the application creates a copy of the
lookup item of the field, sets its lookup_field attribute to the field. and triggers on_field_select_value event. Write this
event handler to specify fields that will be displayed, set up filters for the lookup item, before it will be opened and
displayed for a user to select a value for the field.

The lookup field in the lookup item can also be a lookup field, for example:

3.5. Data programming 89

Jam.py documentation Documentation

To set up such a field use Lookup field 2 and Lookup field 3 attributes.

Value list

Sometimes a source of a lookup field can be defined as a value list. For example, a MediaType field in the Tracks
catalog of the Demo project has a Lookup value list attribute set to the MediaTypes lookup list:

90 Chapter 3. Jam.py programming

Jam.py documentation Documentation

Use the Lookup List Dialog of the task to define such lookup lists.

See also

Lookup fields

Lookup lists

3.5.7 Filtering records

There are three ways to define what records an item dataset will get from the database table when the open method
is called:

• to specify where parameter (option) of the open method,

• call the set_where method, before calling the open method,

• or use filters.

When where parameter is specified, it is always used even if the set_where method was called or item has filters
whose values have been set.

When where parameter is omitted the parameter passed to the set_where method are used.

3.5. Data programming 91

Jam.py documentation Documentation

For example on the client in the following code in the first call of the open method the where option will be
used to filter records, in the second call the parameters passed to set_where and only the third time the value of
invoicedate1 filter will be used

function test(invoices) {
var date = new Date(new Date().setYear(new Date().getFullYear() - 1));

invoices.clear_filters();
invoices.filters.invoicedate1.value = date;

invoices.open({where: {invoicedate__ge: date}});

invoices.set_where({invoicedate__ge: date});
invoices.open();

invoices.open();
}

date = datetime.datetime.now() - datetime.timedelta(days=3*365)

The same code on the server looks the following way:

from datetime import datetime

def test(invoices):
date = datetime.now()
date = date.replace(year=date.year-1)

invoices.clear_filters()
invoices.filters.invoicedate1.value = date

invoices.open(where={'invoicedate__ge': date})

invoices.set_where(invoicedate__ge=date)
invoices.open()

invoices.open()

In the framework, the following symbols and corresponding constants are defined to filter records:

92 Chapter 3. Jam.py programming

Jam.py documentation Documentation

Filter type Filter sym-
bol

ConstantSQL Operator

EQ ‘eq’ FILTER_EQ=
NE ‘ne’ FILTER_NE<>
LT ‘lt’ FILTER_LT<
LE ‘le’ FILTER_LE<=
GT ‘gt’ FILTER_GT>
GE ‘ge’ FILTER_GE>=
IN ‘in’ FILTER_ININ
NOT IN ‘not_in’ FILTER_NOT_INNOT IN
RANGE ‘range’ FILTER_RANGEBETWEEN
ISNULL ‘isnull’ FILTER_ISNULLIS NULL
EXACT ‘exact’ FILTER_EXACT=
CONTAINS ‘contains’ FILTER_CONTAINSuses LIKE with the “%” sign to find records where field value con-

tains a search string
STARTWITH ‘startwith’ FILTER_STARTWITHuses LIKE with the “%” sign to find records where field value starts

with a search string
ENDWITH ‘endwith’ FILTER_ENDWITHuses LIKE with the “%” sign to find records where field value ends

with a search string
CONTAINS
ALL

‘contains_all’ FILTER_CONTAINS_ALLuses LIKE with the “%” sign to find records where field value con-
tains all words of a search string

The where the parameter of the openmethod is a dictionary, whose keys are the names of the fields that are followed,
after double underscore, by a filter symbol. For EQ filter the filtering symbol ‘__eq’ can be omitted. For example
{'id': 100} is equivalent to {'id__eq': 100}.

See also

Dataset

Filters

Client

open

set_where

Server

open

set_where

3.5.8 Filters

For each item that have access to a database table a list of filter objects can be created.

To create filters use an Filters Dialog of the Application builder.

Filters provide a convenient way for users to visually specify parameters of the request made by the application to the
project database

3.5. Data programming 93

Jam.py documentation Documentation

Each filter has the following attributes:

• owner – an item that owners this filter,

• filter_name — the name of the filter that can be used in programming code

• filter_caption - the name of the filter used in the visual representation in the client application,

• filter_type — type of the filter, see Filtering records,

• visible — if the value of this attribute is true, a visual representation of this filter will be created by the
create_filter_inputs method, when a filters option is not specified,

• value — a value of the filter,

All filters of the item are attributes of the filters of its object. By using filter_name we can get access to the
filter object:

invoices.filters.invoicedate1.value = new Date()

Another way to get access to the filter is to use filter_by_name method:

invoices.filter_by_name('invoicedate').value = new Date()

See also

Dataset

Filtering records

Client

filters

Filter class

assign_filters

clear_filters

each_filter

filter_by_name

Server

filters

Filter class

clear_filters

filter_by_name

94 Chapter 3. Jam.py programming

Jam.py documentation Documentation

3.5.9 Details

Details are used in the framework to work with tabular data, pertaining to a record in an item’s table.

For example, the Invoices journal in the Demo application has the InvoiceTable detail, which keeps a list of tracks in
an customer’s invoice.

Details and detail items share the same underlying database table.

To create a detail, you must first create a detail item (select Details group of the project tree and click on New button)
and then use the Details Dialog (select item in the project tree and click on Details button) to add a detail to an item.

For example the following code

def on_created(task):
task.invoice_table.open()
print task.invoice_table.record_count()

task.invoices.open(limit=1)
task.invoices.invoice_table.open()

print task.invoices.invoice_table.record_count()

will print:

2259
6

Details have two common fields - master_id and master_rec_id, that are used to store information about the
ID of the master (each item have its own unique ID) and the value of the primary field of the record of its master. This
way each table can be linked to several items. As well as each item can have several details. To get access to details
of an item use its details attribute. To get access to the master of the detail use its master attribute.

Detail class, used to create details, is an ancestor of the Item class and inherits all its attributes, methods and events.

Note: The apply method of the Detail class does nothing. To write changes made to a detail use apply method of
its master.

To work with a detail its muster must be active

To make any changes to a detail its master must be in an edit or insert mode

Examples

In this example from the client module of the Invoices item of Demo project, the Invoice_table detail is reopened
every time the cursor of its master moves to another record.

var ScrollTimeOut;

function on_after_scroll(item) {
clearTimeout(ScrollTimeOut);
ScrollTimeOut = setTimeout(

function() {
item.invoice_table.open(function() {});

},
100

);
}

3.5. Data programming 95

Jam.py documentation Documentation

And just as an example:

from datetime import datetime, timedelta

def on_created(task):
invoices = task.invoices.copy()
invoices.set_where(invoicedate__gt=datetime.now()-timedelta(days=1))
invoices.open()
for i in invoices:

i.invoice_table.open()
i.edit()
for t in i.invoice_table:

t.edit()
t.sales_id.value = '101010'
t.post()

i.post()
invoices.apply()

The same code on the client will be as follows:

function on_page_loaded(task) {
var date = new Date(),

invoices = task.invoices.copy();

invoices.set_where({invoicedate__gt: date.setDate(date.getDate() - 1)});
invoices.open();
invoices.each(function(i) {

i.invoice_table.open();
i.edit();
i.invoice_table.each(function(t) {

t.edit();
t.sales_id.value = '101010';
t.post();

});
i.post();

});
invoices.apply();

}

3.6 Server side programming

In most cases, the client sends a request to the server when following methods of an item are executed:

• open

• apply

• print

• server

In these cases the client sends to the server the ID of the item’s task, the ID of the item, the type of the request and its
parameters.

The server on receiving the request, based on passed IDs, finds the task (it can be Project task or Application builder
task) and the item on the server, executes the corresponding method with passed parameters and returns the result of
the execution to the client. The server method can trigger events that can modify its default behavior.

96 Chapter 3. Jam.py programming

Jam.py documentation Documentation

Every item of the task tree have the environ and session attributes that store context of the current request.

The most common server events are:

• on_created - The event is triggered by the task when it has just been created by the server application. It can be
used to initialize the project.

• on_apply events - These events are triggered when the apply method of the item is called on the client or the
server

• on_open_events - These events are triggered when the open method of the item is called on the client or the
server

• on_generate - “The event is triggered when the print method of a report is called on the client.

Note: Note that the task tree on the server is immutable, you can not change the attributes of the items in the task tree.

You must use the copy method to create a copy of an item. This copy is an exact copy of an item at the time of creating
of the task tree. It is not added to the task tree and will be destroyed by Python garbage collector when no longer
needed.

3.6.1 on_apply events

When the apply method of the item is called on the client or the server, the server application, by default, generates
SQL query, based on changes made to the dataset and executes it.

This behavior can be changed by writing an on_apply event handler in the item server module.

Sometimes it becomes necessary to execute some code, when changes are saved, for all items. In this case the
on_apply event handler of the task (declared in the task server module) can be used.

The following code describes how these events are handled:

#...
result = None
if self.task.on_apply:

result = self.task.on_apply(self, delta, params, connection)
if result is None and self.on_apply:

result = self.on_apply(self, delta, params, connection)
if result is None:

result = self.apply_delta(delta, params, connection)
#...
return result

It checks if the task has an on_apply event handler. If the on_apply event handler is declared in the task server
module, it is executed.

If the on_apply event handler of the task is not declared or the result of the event handler returns None, the method
checks whether the item has an on_apply event handler. If it is declared in the item server module, it is executed.

If the result returned by the item event handler is None, the apply_deltamethod of the item is called that generates
SQL query, execute it and returns the result

Example

Here is an example how on_apply can be used

3.6. Server side programming 97

Jam.py documentation Documentation

3.6.2 on_open_events

When the open method of the item is called on the client or the server, the server application executes the following
code:

result = None
if self.task.on_open:

result = self.task.on_open(self, params)
if result is None and self.on_open:

result = self.on_open(self, params)
if result is None:

result = self.execute_open(params)

It checks if the task has an on_open event handler. If the on_open event handler is declared in the task server
module, it is executed.

If the on_open event handler of the task is not declared or the result of the event handler returns None, the method
checks whether the item has an on_open event handler. If it is declared in the item server module, it is executed.

If the result returned by the item event handler is None, the execute_open method of the item is called that
generates SQL query, execute it and returns the result

Example

Here is an example how on_open can be used

3.7 Programming reports

3.7.1 Report templates

To create a report, you must first prepare a report template in LibreOffice Calc.

The template files are located in the report folder of the project directory.

The following figure shows a template of the Invoice report.

98 Chapter 3. Jam.py programming

Jam.py documentation Documentation

Reports in Jam.py are band-oriented.

Each report template is divided into bands. To set bands use the leftmost column of a template spreadsheet.

In the Invoice report template there are three bands: title, detail and summary.

In addition, templates can have programmable cells.

For example, in the template of Invoice report the I7 cell contains the text %(date)s.

Programmable cell begins with %, then follows the name of the cell in the parenthesis which is followed by character
s.

3.7.2 Creating a report

To add a new report to Jam.py project, choose the Reports node in the project tree, the click the New button and fill in
the caption, name and the template file name of the report.

3.7. Programming reports 99

Jam.py documentation Documentation

If a visible checkbox is set, the default code adds the report to the Reports menu of the project.

3.7.3 Report parameters

You can specify the parameters of the report. For example, the Customer purchases report of the Demo project have
three parameters.

100 Chapter 3. Jam.py programming

Jam.py documentation Documentation

To add or change a report parameter click Report params button in the left panel of the Application builder. A form
will appear displaying the list of existing parameters. Then click New or Edit button of the form to add or change the
parameter.

3.7. Programming reports 101

Jam.py documentation Documentation

In the dialog box fill in:

• Caption - the name of the parameter that appears to users

• Name - the name of the parameter will be used in programming code to get access to the parameter object.

• Type - the data type of the parameter

• Visible - the client application creates a form to specify the parameters before printing the report. If this check-
box is checked, the input element for this parameter will appear in the form

• Required - if this checkbox is checked and Visible attribute is set, the client application will require a users to
specify the parameter value before printing the report

• Align - specifies how a value of the parameter will be aligned in the input element

You can create a lookup parameter, For example, the Customer purchases report has a Customer parameter that can
be selected from Customers catalog:

102 Chapter 3. Jam.py programming

Jam.py documentation Documentation

In this case you should specify

• Lookup item - the item to select the parameter value from

• Lookup field - the field in the lookup item

Form for setting the parameters of Customer purchases report is as follows:

3.7. Programming reports 103

Jam.py documentation Documentation

3.7.4 Client-side report programming

To print a report on the client use the print method.

As a result of calling this function, the client calls create_param_form method to create a form for editing the report
parameters, based on the html template defined in the index.html file (see Forms).

This method, after creating the form, triggers the following events:

• on_param_form_created of the task.

• on_param_form_created of the report group that owns the report, if one is defined

• on_param_form_created of the report, if one is defined.

The default code has the on_param_form_created event handler, defined for the task. In this event, the click on the
Print button is connected to the report’s process_report method.

function on_param_form_created(item) {
item.create_param_inputs(item.param_form.find(".edit-body"));
item.param_form.find("#ok-btn").on('click.task', function() {

item.process_report()
});
item.param_form.find("#cancel-btn").on('click.task', function() {

item.close_param_form()
});

}

In its turn the process_report method triggers

• on_before_print_report event handler of the report group

• on_before_print_report event handler of the report

In this event handlers developer can define some common (report group event handler) or specific (report event handler)
attributes of the report.

For example, in the default code, there is the on_before_print_report event handler of the report group, in which
report’s extension attribute is defined:

function on_before_print_report(report) {
var select;
report.extension = 'pdf';
if (report.param_form) {

select = report.param_form.find('select');
if (select && select.val()) {

report.extension = select.val();
}

}
}

In the following event handler, defined in the client module of the invoice report of the Demo application, the value of
the report id parameter is set:

function on_before_print_report(report) {
report.id.value = report.task.invoices.id.value;

}

After that the process_report method sends asynchronous request to the server to generate the report (see Server-side
programming).

The server returns to the method an url to a file with generated report.

104 Chapter 3. Jam.py programming

Jam.py documentation Documentation

The method then checks if the on_open_report event handler of the report group is defined. If this events handler if
defined calls it, otherwise checks the on_open_report of the report. If it is defined then calls it.

If none of this events are defined, it (depending on the report extension attribute) opens the report in the browser or
saves it to disc.

3.7.5 Server-side report programming

When a server gets a request from a client to generate report, it first of all creates a copy of the report and then this
copy calls the generate method.

This method triggers the on_before_generate event. In this event handler developer should write a code that generates
the content of the report.

For example for the invoice report of the Demo application this event is as follows:

def on_generate(report):
invoices = report.task.invoices.copy()
invoices.set_where(id=report.id.value)
invoices.open()

customer = invoices.firstname.display_text + ' ' + invoices.customer.display_text
address = invoices.billing_address.display_text
city = invoices.billing_city.display_text + ' ' + invoices.billing_state.display_

→˓text + ' ' + \
invoices.billing_country.display_text

date = invoices.invoicedate.display_text
shipped = invoices.billing_address.display_text + ' ' + invoices.billing_city.

→˓display_text + ' ' + \
invoices.billing_state.display_text + ' ' + invoices.billing_country.display_

→˓text
taxrate = invoices.taxrate.display_text
report.print_band('title', locals())

tracks = invoices.invoice_table
tracks.open()
for t in tracks:

quantity = t.quantity.display_text
track = t.track.display_text
unitprice = t.unitprice.display_text
sum = t.amount.display_text
report.print_band('detail', locals())

subtotal = invoices.subtotal.display_text
tax = invoices.tax.display_text
total = invoices.total.display_text
report.print_band('summary', locals())

First, we use the copy method to create a copy of the invoices journal.

invoices = report.task.invoices.copy()

We create the copiy because multiple users can simultaneously generate the same report in parallel threads.

Then we call the set_where method of the copy:

invoices.set_where(id=report.id.value)

3.7. Programming reports 105

Jam.py documentation Documentation

where report.id.value is report id parameter, the value of which we set in the on_before_print_report event handler on
the client and which is equal to the current id field value of the invoice journal.

Then, using the open method, we obtain the records on the server. After that the print_band method is used to print
title band:

report.print_band('title', locals())

But before that we assign values to four local variables: customer, address, city and date that correspond to pro-
grammable cells in the title band in the report template.

Then the same way we generate detail and summary bands.

When the report is generated and the value of report extension attribute, set on the client, is not equals ‘pdf’ the server
converts the ods file using LibreOffice.

Once the report is generated it is stored in a report folder of the static directory and the server sends the client the
report file url.

106 Chapter 3. Jam.py programming

CHAPTER 4

Jam.py FAQ

4.1 What is the difference between catalogs and journals

When a new project is created, its task tree has the following groups: Catalogs, Journals, Details and Reports.

Catalogs and Journals belong to the Item Group type and have the same functional purpose. See Groups.

We created them to distinguish between two types of data items:

• data items that contain information of catalog type such as customers, organizations, tracks, etc. - Catalogs

• data items that store information about events recorded in some documents, such as invoices, purchase orders,
etc. - Journals

4.2 Howto upgrade an already created project to a new version of
jampy?

To upgrade an existing project to a new package you must update the package.

You can do it using pip.

If you’re using Linux, Mac OS X or some other flavor of Unix, enter the command:

sudo pip install --upgrade jam.py

If you’re using Windows, start a command shell with administrator privileges and run the command

pip install --upgrade jam.py

107

Jam.py documentation Documentation

4.3 What are foreign keys used for?

Foreign keys that you can create in the Application Builder prevent deletion of a record in the lookup table if a
reference to it is stored in the lookup field.

For example, when a foreign key is created on the “Customer” field for “Invoices” item, user won’t be able to delete a
customer in “Customers” catalog if a reference to it is stored in “Invoices”.

The soft delete attribute of the lookup item must be set to false (see Item Editor Dialog) for the lookup field to appear
in the Foreign Keys Dialog

4.4 Can I use other libraries in my application

You can add javascript libraries to use them for programming on the client side.

It is better to place them in the js folders of the static directory of the project. And refer to them using the src attribute
in the <script> tag of the Index.html file.

For example, Demo project uses Chart.js library to create a dashboard:

<script src="/static/js/Chart.min.js"></script>

On the server side you can import python libraries to your modules.

For exapmple the mail item server module import smtplib library to send emails:

import smtplib

4.5 When printing a report I get an ods file instead of pdf

When a report is generated the server application first creates an ods file.

If extension attribute of the report is set to ‘pdf’ or any other format except ‘ods’, the application first creates an ods
file and then uses LibreOffice in “headless” mode to convert the ods file to that format.

If LibreOffice is currently running on the server this conversion may not happen. You must close LibreOffice on the
server for the conversion to take place.

108 Chapter 4. Jam.py FAQ

CHAPTER 5

How to

Here is a useful code that you can use in your applications:

5.1 How to install Jam.py on Windows

Adapted from Django Docs

The below document is adopted from Django Docs.

This document will guide you through installing Python 3.x and Jam.py on Windows. It also provides instructions for
setting up a virtual environment, which makes it easier to work on Python projects. This is meant as a beginner’s guide
for users working on Jam.py projects and does not reflect how Jam.py should be installed when developing patches for
Jam.py itself.

The steps in this guide have been tested with Windows 10. In other versions, the steps would be similar. You will need
to be familiar with using the Windows command prompt.

5.1.1 Install Python

Jam.py is a Python web framework, thus requiring Python to be installed on your machine. At the time of writing,
Python 3.8 is the latest version.

To install Python on your machine go to https://www.python.org/downloads/. The website should offer you a download
button for the latest Python version. Download the executable installer and run it. Check the boxes next to “Install
launcher for all users (recommended)” then click “Install Now”.

After installation, open the command prompt and check that the Python version matches the version you installed by
executing:

...\> py --version

109

https://docs.djangoproject.com/
https://www.python.org/downloads/

Jam.py documentation Documentation

5.1.2 About pip

pip is a package manager for Python and is included by default with the Python installer. It helps to install and uninstall
Python packages (such as Jam.py!). For the rest of the installation, we’ll use pip to install Python packages from the
command line.

5.1.3 Setting up a virtual environment

It is best practice to provide a dedicated environment for each Jam.py project you create. There are many options
to manage environments and packages within the Python ecosystem, some of which are recommended in the Python
documentation.

To create a virtual environment for your project, open a new command prompt, navigate to the folder where you want
to create your project and then enter the following:

...\> py -m venv project-name

This will create a folder called ‘project-name’ if it does not already exist and set up the virtual environment. To activate
the environment, run:

...\> project-name\Scripts\activate.bat

The virtual environment will be activated and you’ll see “(project-name)” next to the command prompt to designate
that. Each time you start a new command prompt, you’ll need to activate the environment again.

5.1.4 Install Jam.py

Jam.py can be installed easily using pip within your virtual environment.

In the command prompt, ensure your virtual environment is active, and execute the following command:

...\> py -m pip install jam.py

This will download and install the latest Jam.py release.

After the installation has completed, you can verify your Jam.py installation by executing pip list in the command
prompt.

5.1.5 Common pitfalls

• If you are connecting to the internet behind a proxy, there might be problems in running the command py -m
pip install Jam.py. Set the environment variables for proxy configuration in the command prompt as
follows:

...\> set http_proxy=http://username:password@proxyserver:proxyport

...\> set https_proxy=https://username:password@proxyserver:proxyport

• If your Administrator prohibited setting up a virtual environment, it is still possible to install Jam.py as follows:

...\> python -m pip install jam.py

This will download and install the latest Jam.py release.

After the installation has completed, you can verify your Jam.py installation by executing pip list in the
command prompt.

110 Chapter 5. How to

https://pypi.org/project/pip/
https://packaging.python.org/guides/tool-recommendations/
https://packaging.python.org/guides/tool-recommendations/

Jam.py documentation Documentation

However, running jam-project.py will fail since it is not in the path. Check the installation folder:

...\> python -m site --user-site

The output might be similar to below:

C:\Users\youruser\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_
→˓qbz5n2kfra8p0\LocalCache\local-packages\Python39\site-packages

Replace site-packages at the end of above line with Scripts:

...\> dir C:\Users\youruser\AppData\Local\Packages\PythonSoftwareFoundation.
→˓Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\Scripts

The output might be similar to below:

...\> Directory of
→˓C:\Users\yourser\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9_
→˓qbz5n2kfra8p0\LocalCache\local-packages\Python39\Scripts

13/04/2023 02:59 PM <DIR> .
13/04/2023 02:59 PM <DIR> ..
13/04/2023 02:59 PM 1,087 jam-project.py

1 File(s) 1,087 bytes
2 Dir(s) 177,027,321,856 bytes free

Create the new folder somewhere and run jam-project from from it:

...\> python C:\Users\youruser\AppData\Local\Packages\PythonSoftwareFoundation.
→˓Python.3.9_qbz5n2kfra8p0\LocalCache\local-packages\Python39\Scripts\jam-project.
→˓py

Run the new project:

...\> python server.py

5.2 How to migrate development to production

Migrating development to production is very simple in Jam.py due to the ability to export and import its metadata.

To understand the concept of metadata and the process of exporting and importing metadata, please read the topic
Export/import metadata. The process of importing metadata depends on the type of project database.

5.2.1 New project migration

• Create an empty database in the production envirnoment

• Run jam-project.py script to create a new project

• Set up the server. See

– Jam.py deployment with Apache and mod_wsgi,

– How to deploy.

• In the browser start the Application Builder and finish the creation of the project with an empty database.

5.2. How to migrate development to production 111

Jam.py documentation Documentation

• open Parameters dialog to set up the project. Setup the following parameters:

– Production to true

– Safe mode

– Debugging to false

• Export the metadata of the development project to a zip file in the Application Builder by clicking the Export
button.

• Import the metadata to the new project.

Note: For projects with SQLite database you can simply copy the development project folder to the production
environment.

5.2.2 Existing project migration

• Export the metadata of the development project to a zip file.

• Import the metadata to the production project.

Note: For SQLite database, Jam.py doesn’t support importing of metadata into an existing project (project with tables
in the database). You can only import metadata into a new project.

5.2.3 Importing metadata with server shutdown

Stop the server and copy the metadata zip file to migration folder in the project directory. If the folder doesn’t exist,
create it.

Start the server. The web application, while initializing itself, will import the metadata file. You can see the information
on how the file was imported in the log file in the logs folder of the project directory. If the import is successful, the
zip file will be deleted.

5.2.4 Importing metadata without server shutdown

Click the Import button in the Application Builder.

Note: By default the web application in the process that imports the metadata waits for 5 minutes or until all previous
request to the application in this process will be processed before it starts to change the database. For projects that
run on multiple processes you can set the Import delay parameter in the Parameters to delay the change the database
or use Importing metadata with server shutdown.

5.3 How to migrate to another database

You can mirgate your data to another database.

For example, you developed your project with SQLite database amd want to move to Postgress.

To do this, follow these steps:

112 Chapter 5. How to

Jam.py documentation Documentation

1. Create an empty Postgress database

2. Create a new project with this database

3. Export the metadata of the SQLite project to a zip file in the Application Builder by clicking the Export button.

4. Import the metadata to the new project. The web application with create database structures in the Postgress
database.

5. copy data from SQlite to Postgress database using the copy_database method of the task:

• create in the sever module of the task the following function:

from jam.db.db_modules import SQLITE

def copy_db(task):
task.copy_database(SQLITE, '/home/work/demo/demo.sqlite')

• then you can execute it one of the following ways:

– call this function in the on_created event handler:

from jam.db.db_modules import SQLITE

def copy_db(task):
task.copy_database(SQLITE, '/home/work/demo/demo.sqlite')

def on_created(task):
copy_db(task)

– create a button in some form and use the task server method to execute it

function on_view_form_created(item) {
item.add_view_button('Copy DB').click(function() {
task.server('copy_db')

});
}

– or run from from debbuging console of the browser:

task.server('copy_db')

6. Remove the code that was used.

Note: You can not migrate to SQLite database of the current database has foreign keys

5.4 How to deploy

5.4.1 How to deploy project on PythonAnywhere

• Use pip to install Jam.py. To do this, open the bash console and run the following command (for Python 3.7):

pip3.7 install --user jam.py

• Create a zip archive of your project folder, upload the archive in the Files tab and unzip it.

5.4. How to deploy 113

Jam.py documentation Documentation

We assume that you are registered as username and your project is now located in the
/home/username/project_folder directory.

• Open the Web Tab. Add a new web app. In the Code section specify

– Source code: /home/username/project_folder

– Working directory: /home/username/project_folder

In the WSGI configuration file:/var/www/username_pythonanywhere_com_wsgi.py file add the following code

import os
import sys

path = '/home/username/project_folder'
if path not in sys.path:

sys.path.append(path)

from jam.wsgi import create_application
application = create_application(path)

• Reload the server.

5.4.2 A step-by-step guide to deploy a Jam.py on the AWS

This is adapted from https://devops.profitbricks.com/tutorials/install-and-configure-mod_wsgi-on-ubuntu-1604-1/

I hope someone finds it useful.

• Create an AWS account and login

• Go to EC2, create an instance (in this case an Ubuntu 16.04 t2.micro)

• Download the private key when prompted

• Convert pem to ppk using Puttygen (see: https://stackoverflow.com/questions/3190667/
convert-pem-to-ppk-file-format)

• Get EC2 instance public DNS from AWS dashboard

• SSH into EC2 instance using Putty (pointed to the Public DNS and your ppk)

• Username is ubuntu

• Refresh package library:

sudo apt-get update

• Install pip:

sudo apt-get install python3-pip

• Install jam.py:

sudo pip3 install jam.py

• Install Apache:

sudo apt-get install apache2 apache2-utils libexpat1 ssl-cert

• Install mod-wsgi:

114 Chapter 5. How to

file:/var/www/username_pythonanywhere_com_wsgi.py
https://devops.profitbricks.com/tutorials/install-and-configure-mod_wsgi-on-ubuntu-1604-1/
https://stackoverflow.com/questions/3190667/convert-pem-to-ppk-file-format
https://stackoverflow.com/questions/3190667/convert-pem-to-ppk-file-format

Jam.py documentation Documentation

sudo apt-get install libapache2-mod-wsgi-py3

• Restart Apache:

sudo /etc/init.d/apache2 restart

• Move here:

cd /var/www/html/

• Create directory:

sudo mkdir [appname]

• Move here:

cd [appname]

• Create app:

sudo jam-project.py

• Check it’s there:

ls

• Create the config:

sudo nano /etc/apache2/conf-available/wsgi.conf

• Paste the following

WSGIScriptAlias / /var/www/html/[appname]/wsgi.py
WSGIPythonPath /var/www/html/[appname]

<Directory /var/www/html/[appname]>
<Files wsgi.py>
Require all granted

</Files>
</Directory>

Alias /static/ /var/www/html/[appname]/static/

<Directory /var/www/html/[appname]/static>
Require all granted

</Directory>

• Exit and save

• Give file permissions to apache:

sudo chmod 777 /var/www/html/[appname]

• Give ownership to apache:

sudo chown -R www-data:www-data /var/www

• Enable wsgi:

5.4. How to deploy 115

Jam.py documentation Documentation

sudo a2enconf wsgi

• Restart apache:

sudo /etc/init.d/apache2 restart

• Create security group on AWS to allow you to connect HTTP on port 80

• Assign instance to security group

• Test

• If it’s not working, check the error logs to see what’s going on:

nano /var/log/apache2/error.log

This was initialy published by Simon Cox on https://groups.google.com/forum/#!msg/jam-py/Zv5JfkLRFy4/
22tolZ-hAQAJ

5.4.3 How to deploy jam-py app at Linux Apache http server?

So basically deploying straight into the ie an cloud server with open 22, 80 and 443 port. Prerequisite is a signed
certificate for the DNS server name (YOUR_SERVER DNS entry from below). One can use a self signed, etc, not
covering those. Also, Python installed and sudo access (or root for Linux). I have no idea at all about the MS Servers,
sorry.

The App is in read only mode. You can access admin.html page, but can’t change anything. Took me some fiddling
with Google Cloud server, this is a micro Ubuntu instance, plain apache2 install with apt-get.

• Install wsgi module for Apache :

apt-get install libapache2-mod-wsgi

• Enable ssl, wsgi module for apache:

a2enmod ssl wsgi

• Create a custom file for jam-py app, ie /etc/apache2/sites-available/test.conf, for example (still wip):

<IfModule mod_ssl.c>
<VirtualHost YOUR_IP:443>

ServerName YOUR_SERVER
ServerAlias
ServerAdmin YOUR_EMAIL
ErrorLog ${APACHE_LOG_DIR}/test-error-sec.log
CustomLog ${APACHE_LOG_DIR}/test-access-sec.log combined

#below is for cx_Oracle
SetEnv LD_LIBRARY_PATH /u01/app/oracle/product/11.2.0/xe/lib
SetEnv ORACLE_SID XE
SetEnv ORACLE_HOME /u01/app/oracle/product/11.2.0/xe
#finish cx_Oracle

DocumentRoot /var/www/html/simpleassets

SSLEngine on
SSLCertificateFile "/etc/ssl/private/your.crt"

(continues on next page)

116 Chapter 5. How to

https://groups.google.com/forum/#!msg/jam-py/Zv5JfkLRFy4/22tolZ-hAQAJ
https://groups.google.com/forum/#!msg/jam-py/Zv5JfkLRFy4/22tolZ-hAQAJ

Jam.py documentation Documentation

(continued from previous page)

SSLCertificateKeyFile "/etc/ssl/private/your.key"
SSLCertificateChainFile "/etc/ssl/private/your_chain.crt"
SSLCACertificateFile "/etc/ssl/private/your_CA.crt"

WSGIDaemonProcess web user=www-data group=www-data processes=1 threads=5
WSGIScriptAlias / /var/www/html/simpleassets/wsgi.py

<Directory /var/www/html/simpleassets>
Options +ExecCGI
SetHandler wsgi-script
AddHandler wsgi-script .py

Order deny,allow
Allow from all
Require all granted

<Files wsgi.py>
Order deny,allow
Allow from all

comment the following for ubuntu <13
Require all granted

</Files>
</Directory>

<Directory /var/www/html/simpleassets/static>
comment the following for ubuntu < 13
Require all granted

</Directory>
</VirtualHost>

</IfModule>

The above file is using signed certificate your.crt with your.key, and CA, chain file obtained from CA. Please
review resources on the net about certificates and the dns. You’ll need to obtain and copy those files in
/etc/ssl/private folder. Change YOUR_xyz with your preference.

The /var/www/html is the default Ubuntu folder for serving web pages.

• Install jam-py as usual.

I created the /var/www/html/simpleassets folder where unzipped jam-py SimpleAssets project. Follow proce-
dure explained there how to deploy these:

Basically, Export your project, save the zip file and copy it to your web hosting server desired folder. Copy
admin.sqlite and your database as well (providing you’re using sqlite3 database). If using some other database
ie mysql, you’ll need to export/import the database.

• Enable test.conf (the above file name with no extension):

a2ensite test; systemctl restart apache2

That is it. At the moment, I’ve left port 80 as is, and jam-py is running only on https port. To debug problems, I
would start with SeLinux or apparmor. With Ubuntu this might help:

sudo /etc/init.d/apparmor stop

Now, here is the question of how to run TWO jam-py instances on one https server?

5.4. How to deploy 117

Jam.py documentation Documentation

One possible answer to this problem is the DNS. You might decide to set your DNS to ie sec-
ond_instance.YOUR_SERVER name (the above live example would be jam2.research. . .).

So the above test.conf file would be almost the same except YOUR_SERVER is now called sec-
ond_instance.YOUR_SERVER

The /etc/apache2/sites-available/test3.conf file:

<IfModule mod_ssl.c>
<VirtualHost YOUR_IP:443>
ServerName second_instance.YOUR_SERVER
ServerAlias
ServerAdmin YOUR_EMAIL
ErrorLog ${APACHE_LOG_DIR}/test3-error-sec.log
CustomLog ${APACHE_LOG_DIR}/test3-access-sec.log combined
#below is for cx_Oracle
SetEnv LD_LIBRARY_PATH /u01/app/oracle/product/11.2.0/xe/lib
SetEnv ORACLE_SID XE
SetEnv ORACLE_HOME /u01/app/oracle/product/11.2.0/xe
#finish cx_Oracle
DocumentRoot /var/www/html/simpleassets3
SSLEngine on
SSLCertificateFile "/etc/ssl/private/your.crt"
SSLCertificateKeyFile "/etc/ssl/private/your.key"
SSLCertificateChainFile "/etc/ssl/private/your_chain.crt"
SSLCACertificateFile "/etc/ssl/private/your_CA.crt"

WSGIDaemonProcess assets3 user=www-data group=www-data processes=1 threads=5
WSGIScriptAlias / /var/www/html/simpleassets3/wsgi.py

<Directory /var/www/html/simpleassets3>
Options +ExecCGI
SetHandler wsgi-script
AddHandler wsgi-script .py

Order deny,allow
Allow from all
Require all granted

<Files wsgi.py>
Order deny,allow
Allow from all

comment the following for ubuntu <13
Require all granted

</Files>
</Directory>

<Directory /var/www/html/simpleassets3/static>
comment the following for ubuntu < 13
Require all granted

</Directory>
</VirtualHost>

</IfModule>

The jam-py application second_instance lives now in ie /var/www/html/simpleassets3, and WSGIDaemonProcess is
adjusted to new daemon, called assets3. Everything else is almost the same.

This is possible because the SSL certificate is a * (star, or wildcard) certificate, enabling you to run multiple services

118 Chapter 5. How to

Jam.py documentation Documentation

on one DNS domain.

This was initialy published by Dražen Babić on https://github.com/jam-py/jam-py/issues/35

5.4.4 How to do with Nginx with Gunicorn?

Green Unicorn (gunicorn) is an HTTP/WSGI server designed to serve fast clients or sleepy applications. That is to
say; behind a buffering front-end server such as nginx or lighttpd.

By default, gunicorn will listen on 127.0.0.1. Navigate to jam App folder, or use (ie in scripts, cron job, etc)

python /usr/bin/gunicorn --chdir /path/to/jam/App wsgi

or from /path/to/jam/App:

gunicorn wsgi
[2018-04-13 15:01:44 +0000] [8650] [INFO] Starting gunicorn 19.4.5
[2018-04-13 15:01:44 +0000] [8650] [INFO] Listening at: http://127.0.0.1:8000 (8650)
[2018-04-13 15:01:44 +0000] [8650] [INFO] Using worker: sync
[2018-04-13 15:01:44 +0000] [8654] [INFO] Booting worker with pid: 8654
.
.

To start jam.py on all interfaces and port 8081:

gunicorn -b 0.0.0.0:8081 wsgi
[2018-04-13 15:03:34 +0000] [8680] [INFO] Starting gunicorn 19.4.5
[2018-04-13 15:03:34 +0000] [8680] [INFO] Listening at: http://0.0.0.0:8081 (8680)
[2018-04-13 15:03:34 +0000] [8680] [INFO] Using worker: sync
[2018-04-13 15:03:34 +0000] [8684] [INFO] Booting worker with pid: 8684
.
.

Spin up 5 workers if u like with –workers=5

Nginx:

comment out default location in /etc/nginx/sites-enabled/default (Linux Mint):

#location / {
First attempt to serve request as file, then
as directory, then fall back to displaying a 404.

try_files $uri $uri/ =404;
}

and add:

Proxy connections to the application servers
app_servers
location / {

proxy_pass http://app_servers;
proxy_redirect off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Host $server_name;

(continues on next page)

5.4. How to deploy 119

https://github.com/jam-py/jam-py/issues/35

Jam.py documentation Documentation

(continued from previous page)

}

add in /etc/nginx/nginx.conf 127.0.0.1:8081 if this is your Gunicorn server address and port:

Configuration containing list of application servers
upstream app_servers {
server 127.0.0.1:8081;
}

This also enables to have different App servers on different ports

Client Request ----> Nginx (Reverse-Proxy)
|

/|\
| | `-> App. Server I. 127.0.0.1:8081
| `--> App. Server II. 127.0.0.1:8082
`----> App. Server III. 127.0.0.1:8083

Restart nginx and viola!

Congratulations! We can now test Nginx with Jam.py.

Now, certs:

in /etc/nginx/sites-enabled/jam we can have something like this to pass everything from http to https to 8001 port (or
any other as per above):

server {
listen 80;
server_name YOUR_SERVER;

access_log off;

location /static/ {
alias /path/to/jam/App/static/;

}

location / {
proxy_pass http://127.0.0.1:8001;
proxy_set_header X-Forwarded-Host $server_name;
proxy_set_header X-Real-IP $remote_addr;
add_header P3P 'CP="ALL DSP COR PSAa PSDa OUR NOR ONL UNI COM NAV"';

}

return 301 https://$server_name$request_uri;
}
server {

listen 443;
server_name YOUR_SERVER_FQDN;

access_log off;

location /static/ {
alias /path/to/jam/App/static/;

}

(continues on next page)

120 Chapter 5. How to

Jam.py documentation Documentation

(continued from previous page)

location = /favicon.ico {
alias /path/to/jam/App/favicon.ico;

}

ssl on;
ssl_certificate /etc/nginx/ssl/YOUR_SERVER.crt;
ssl_certificate_key /etc/nginx/ssl/YOUR_SERVER.key;
add_header Strict-Transport-Security "max-age=31536000";

location / {
client_max_body_size 10M;
proxy_pass http://127.0.0.1:8001;
proxy_set_header X-Forwarded-Host $server_name;
proxy_set_header X-Real-IP $remote_addr;
add_header P3P 'CP="ALL DSP COR PSAa PSDa OUR NOR ONL UNI COM NAV"';

}

That’s it!

Congratulations! We can now test Nginx with Jam.py on https port!

This was initialy published by Dražen Babić on https://github.com/jam-py/jam-py/issues/67

5.5 How do I write functions which have a global scope

Each function defined in the server or client module of an item becomes an attribute of the item.

Thus, using the task tree, you can access any function declared in the client or server module in any project module.

For example, if we have a function some_func declared in the Customers client module, we can execute it in any
module of the project. Note that the task is a global variable on the client.

task.customers.some_func()

On the server, the task is not global, but an item that triggered / called it is passed to each event handler and function
called by the server method. Therefore, if the some_func function is declared in the Customers server module, it
can be executed in a function or event handler as follows:

def on_apply(item, delta, params):
item.task.customers.some_func()

Note that event handlers are just functions and can also be called from other modules.

5.6 How to validate field value

Write the on_field_validate event handler to validate field value.

For example, The event will triggered when the post method is called, that saves the record in memory or when the
user leaves the input used to edit the unitprice field value.

function on_field_validate(field) {
if (field.field_name === 'unitprice' && field.value <= 0) {

return 'Unit price must be greater that 0';
(continues on next page)

5.5. How do I write functions which have a global scope 121

https://github.com/jam-py/jam-py/issues/67

Jam.py documentation Documentation

(continued from previous page)

}
}

As an example, below is the code that doesn’t use the on_field_validate method and checks the value of the unitprice
field and prevents the user from leaving the input when the value is less than or equal to zero:

function on_edit_form_shown(item) {
item.each_field(function(field) {

var input = item.edit_form.find('input.' + field.field_name);
input.blur(function(e) {

var err;
if ($(e.relatedTarget).attr('id') !== "cancel-btn") {

err = check_field_value(field);
if (err) {

item.alert_error(err);
input.focus();

}
}

});
});

}

function check_field_value(field) {
if (field.field_name === 'album' && !field.value) {

return 'Album must be specified';
}
if (field.field_name === 'unitprice' && field.value <= 0) {

return 'Unit price must be greater that 0';
}

}

In the on_edit_form_shown event handler, we iterate through all the fields using the each_field method and find the
input data for each field, if it exists.

In the on_edit_form_shown event handler we iterate through all the fields using the each_field method and find the
input for each field, if it exists. Each input has a class with the name of the field (field_name).

Then we assign a jQuery blur event to it, in which we call the check_field_value function, and, if it returns text
string, we warn the user and focus the input. Before calling the function, we check whether the “Cancel” button was
pressed.

We declared the on_edit_form_shown event handler in the item’s module, so it will work in this module only.

We can declare the following event handler in the task client module so we can write check_field_value function
in any module we need to enable this field validation. The on_edit_form_shown of the task is called first for every
item when edit form is shown. See Form events.

function on_edit_form_shown(item) {
if (item.check_field_value) {

item.each_field(function(field) {
var input = item.edit_form.find('input.' + field.field_name);
input.blur(function(e) {

var err;
if ($(e.relatedTarget).attr('id') !== "cancel-btn") {

err = item.check_field_value(field);
if (err) {

item.alert_error(err);

(continues on next page)

122 Chapter 5. How to

Jam.py documentation Documentation

(continued from previous page)

input.focus();
}

}
});

});
}

}

In this event handler we check if the item has the check_field_value attribute. Each function declared in a
module becomes an attribute of the item.

5.7 How to add a button to a form

The simplest way to add a button to an edit / view from is to use add_edit_button / add_view_button correspondingly.
You can call this functions in the on_edit_form_created / on_view_form_created event handlers.

For example the Customers item uses this code in its client module to add buttons to a view form:

function on_view_form_created(item) {
item.table_options.multiselect = false;
if (!item.lookup_field) {

var print_btn = item.add_view_button('Print', {image: 'icon-print'}),
email_btn = item.add_view_button('Send email', {image: 'icon-pencil'});

email_btn.click(function() { send_email() });
print_btn.click(function() { print(item) });
item.table_options.multiselect = true;

}
}

In this code the item’s lookup_field attribute is checked and if it is defined (the view form is not created to select a
value for a lookup field) the two buttons are created and for them JQuery click events are assigned to send_email
and print functions declared in that module.

5.8 How to execute script from client

You can use server method to send a request to the server to execute a function defined in the server module of an
item.

En the example below we create the btn button that is a JQuery object. Then we use its click method to attach a
function that calls the server method of the item to run the calculate function defined in the server module of the
item.

The code in the client module:

function on_view_form_created(item) {
var btn = item.add_view_button('Calculate', {type: 'primary'});
btn.click(function() {

item.server('calulate', [1, 2, 3], function(result, error) {
if (error) {
item.alert_error(error);

}
else {
console.log(result);

(continues on next page)

5.7. How to add a button to a form 123

Jam.py documentation Documentation

(continued from previous page)

}
})

});
}

The code in the server module:

def calculate(item, a, b, c):
return a + b + c

5.9 How to change style and attributes of form elements

You can access any DOM element on forms using jQuery.

In the following example, in the on_edit_form_created event handler defined the item client module we find
the OK button, hide it, and change the text of the Cancel button to “Close” in the edit form:

function on_edit_form_created(item) {
item.edit_form.find("#ok-btn").hide();
item.edit_form.find("#cancel-btn").text('Close');

}

When an application creates input controls, it adds a class with a name that is the field_name attribute of the corre-
sponding field to each input.

Thus, using the jQuery selectors, we can find the input of the customer field as follows (we select the input with the
“customer” class in the edit form):

item.edit_form.find("input.customer")

Having found the element of the form you can use JQuery methods to change it.

As the field inputs are created by create_inputs after the on_edit_form_created event have been triggered (see the
on_edit_form_created event handler in the task client module) you must write on_edit_form_shown event
handler to change inputs.

For example this code

function on_edit_form_shown(item) {
item.edit_form.find('input.name').css('color', 'red');
item.edit_form.find('input.name').css('font-size', '24px');
item.edit_form.find('input.tracks_sold').width(20);
item.edit_form.find('input.genre').parent().width('40%');
item.edit_form.find('input.composer').prop('type', 'password');

}

will change form inputs this way:

124 Chapter 5. How to

https://www.w3schools.com/jquERY/jquery_ref_selectors.asp

Jam.py documentation Documentation

Please, note that if you need to change the width of input with prepend or append buttons (inputs of date, datetime and
lookup fields) set the width of the input parent:

item.edit_form.find('input.album').parent().width('50%');

Another way to change the style of DOM elements is to use CSS. When the task node is selected in the Application
Builder, the “project css” button is located on the right pane. Click on it to open the project.css file, which is located
in the project folder. You can use it to input CSS that defines the style of the DOM elements of the project.

Each item form created in the project has css classes that enable developer to identify the form.

Each form has a class identifying it’s type: ‘view-form’, ‘edit-form’, ‘filter-form’ or ‘param-form’.

For example, the following code will remove the images in the buttons at the bottom of the form:

.view-form .form-footer .btn i {
display: none;

}

More edit form examples:

.edit-form #ok-btn {
font-weight: bold;
background-color: lightblue;

}

.edit-form.invoices input.total {
color: red;

}

Also each form has a class with a name that is the item_name attribute of the item.

The following code will remove images in the buttons only in the Invoices view form:

.view-form.invoices .form-footer .btn i {
display: none;

}

5.9. How to change style and attributes of form elements 125

Jam.py documentation Documentation

You can change the way tables are displayed. The tables that are created by the create_table method have a css class
“dbtable” and a class with a name that is the item_name attribute of the item. each column of the table alse have a
class with a name that is the field_name attribute of the corresponding field.

The example, the following code will display cells of the Invoices table Customer column bold:

.dbtable.invoices td.customer {
font-weight: bold;

}

One more way to change the way the field colum is displayed is to write the on_field_get_html event handler.

For example:

function on_field_get_html(field) {
if (field.field_name === 'total') {

if (field.value > 10) {
return '' + field.display_text + '';

}
}

}

5.10 How to create a custom menu

To create a custom menu you must specify a custom_menu option for the task’s create_menu method in the task’s
client module.

5.11 How to append a record using an edit form without opening a
view form?

You must first call the open method of the item to initiate its dataset. For example, if you want to add a new record to
invoices in the Demo application, you can do so as follows:

var invoices = task.invoices.copy();
invoices.open({ open_empty: true });
invoices.append_record();

In this code, we create a copy of the item using the copy method so that this operation does not affect the Invoices
view form if it is open in a tab.

You can also change the record, but before you do this, you must get it from the server. Below is the code that modifies
the record with id 411. We check that the record exists using the rec_count property, otherwise we display a warning.

var invoices = task.invoices.copy();
invoices.open({ where: {id: 411} });
if (invoices.rec_count) {

invoices.edit_record();
}
else {

invoices.alert_error('Invoices: record not found.');
}

In the example above the open method is not executed syncroniously.

126 Chapter 5. How to

Jam.py documentation Documentation

The code below does it asyncroniously:

var invoices = task.invoices.copy();
invoices.open({ where: {id: 411} }, function() {

if (invoices.rec_count) {
invoices.edit_record();

}
else {

invoices.alert_error('Invoices: record not found.');
}

});

Invoices has the Modeless attribute set in the Edit form dialog, so the the edit form with be opened in a tab. You can
change it by setting modeless attribute of edit_options to make the edit form modal:

var invoices = task.invoices.copy();
invoices.edit_options.modeless = false;

5.12 How to prohibit changing record

Let’s assume that we have an item with a boolean field “posted”, and if the value of the field is true, we must prohibit
changing or deleting the record.

We can do this by writing the on_after_scroll event handler and using permissions property:

function on_after_scroll(item) {
if (item.rec_count) {

item.permissions.can_edit = !item.posted.value;
item.permissions.can_delete = !item.posted.value;
if (item.view_form) {

item.view_form.find("#delete-btn").prop("disabled", item.posted.value);
}

}
}

In this event handler we check the value of the “posted” field and set the permissions property attributes to true.

We can also write the on_apply event handler in the server module of the item:

def on_apply(item, delta, params, connection):
for d in delta:

if d.posted.old_value:
raise Exception('Document posted. No change allowed')

5.13 How to link two tables

We’ll explain how to link two items on example of the tracks and invoicetable items from the demo application. We’ll
link the record of tracks with the corresponding list of sold tracks from invoicetable that contains all sold tracks from
invoices.

The default behavior if view_form is defined in the on_view_form_created event handler declared in the task client
module.

We will change it in the on_view_form_created event handler in the tracks client module

5.12. How to prohibit changing record 127

Jam.py documentation Documentation

function on_view_form_created(item) {
item.table_options.height -= 200;
item.invoice_table = task.invoice_table.copy();
item.invoice_table.paginate = false;
item.invoice_table.create_table(item.view_form.find('.view-detail'), {

height: 200,
summary_fields: ['date', 'total'],

});
}

Then we reduce height of the table that displays tracks data by 200 pixels

item.table_options.height -= 200;

create a copy of invoice_table, set its paginate attribute to false and call the create_table method to create a table that
will display the sold tracks

item.invoice_table = task.invoice_table.copy();
item.invoice_table.paginate = false;
item.invoice_table.create_table(item.view_form.find('.view-detail'), {

height: 200,
summary_fields: ['date', 'total'],

});

For this table we set the height to 200 pixels and define to summary fields.

This table will always be empty if we won’t define the following on_after_scroll event handler:

function on_after_scroll(item) {
if (item.view_form.length) {

if (item.rec_count) {
item.invoice_table.set_where({track: item.id.value});
item.invoice_table.set_order_by(['-invoice_date']);
item.invoice_table.open(true);

}
else {

item.invoice_table.close();
}

}
}

The on_after_scroll event is triggered whenever the current record is changed. So when the track is changed we call
open method, pre-setting the filter and order

item.invoice_table.set_where({track: item.id.value});
item.invoice_table.set_order_by(['-invoice_date']);
item.invoice_table.open(true);

This method sends a request to the server, that generates sql query, executes it and returns a dataset that contains sold
records of this track ordered in descending order of invoice_date field.

If the tracks dataset is empty we clear the sold records dataset by calling the close method.

Because controls in Jam.py are data-aware every change of sold records dataset will be displayed in the table that we
created in the on_view_form_created event handler.

Now every time the track has changed the application send request to the server to renew the sold tracks. This is not
effective and sometimes can lead to delays. To avoid this we use the JavaScript setTimeout function:

128 Chapter 5. How to

Jam.py documentation Documentation

var scroll_timeout;

function on_after_scroll(item) {
if (!item.lookup_field && item.view_form.length) {

clearTimeout(scroll_timeout);
scroll_timeout = setTimeout(

function() {
if (item.rec_count) {

item.invoice_table.set_where({track: item.id.value});
item.invoice_table.set_order_by(['-invoice_date']);
item.invoice_table.open(true);

}
else {

item.invoice_table.close();
}

},
100

);
}

}

This function guarantees that the data will be updated no more than once every 100 milliseconds.

Since the invoicetable is a detail it has the master_rec_id field that stores a reference to invoice that has this record,
we can show the user an invoice that contains the current sold record. To do so we pass to the create_table method the
function that will be executed when user double click the record:

item.invoice_table.create_table(item.view_form.find('.view-detail'), {
height: 200,
summary_fields: ['date', 'total'],
on_dblclick: function() {

show_invoice(item.invoice_table);
}

});

and define the function as follows:

function show_invoice(invoice_table) {
var invoices = task.invoices.copy();
invoices.set_where({id: invoice_table.master_rec_id.value});
invoices.open(function(i) {

i.edit_options.modeless = false;
i.can_modify = false;
i.invoice_table.on_after_open = function(t) {

t.locate('id', invoice_table.id.value);
};
i.edit_record();

});
}

In this function we create a copy of the invoices journal and find the invoice. When the open method is executed we
will show the invoice by calling its edit_record method. But before calling it we set its attributes so that it will be
modal and the user won’t be able to modify it.

Besides we dynamically assign on_after_open event handler to the invoice_table detail of the invoice we get. In this
event handler we will find the current record in the sold records by calling the locate method.

Finally we will check the lookup_field attribute of tracks. This attribute is true if the item was created to select a value
for the lookup field when a user clicks on the button to the right of lookup field input. We will make so that the sold

5.13. How to link two tables 129

Jam.py documentation Documentation

tracks are not shown when the user selects the value for the lookup field.

In addition, we add an alert informing the user about the possibility of seeing the invoice.

Finally the code of the on_view_form_created will be as follows:

function on_view_form_created(item) {
if (!item.lookup_field) {

item.table_options.height -= 200;
item.invoice_table = task.invoice_table.copy();
item.invoice_table.paginate = false;
item.invoice_table.create_table(item.view_form.find('.view-detail'), {

height: 200,
summary_fields: ['date', 'total'],
on_dblclick: function() {

show_invoice(item.invoice_table);
}

});
item.alert('Double-click the record in the bottom table ' +
'to see the invoice in which the track was sold.');

}
}

var scroll_timeout;

function on_after_scroll(item) {
if (!item.lookup_field && item.view_form.length) {

clearTimeout(scroll_timeout);
scroll_timeout = setTimeout(

function() {
if (item.rec_count) {

item.invoice_table.set_where({track: item.id.value});
item.invoice_table.set_order_by(['-invoice_date']);
item.invoice_table.open(true);

}
else {

item.invoice_table.close();
}

},
100

);
}

}

function show_invoice(invoice_table) {
var invoices = task.invoices.copy();
invoices.set_where({id: invoice_table.master_rec_id.value});
invoices.open(function(i) {

i.edit_options.modeless = false;
i.can_modify = false;
i.invoice_table.on_after_open = function(t) {

t.locate('id', invoice_table.id.value);
};
i.edit_record();

});
}

130 Chapter 5. How to

Jam.py documentation Documentation

5.14 How change field value of selected records

In this example, we will show how to change the “Media Type” field of the “Tracks” catalog to the same value for the
selected records.

5.14. How change field value of selected records 131

Jam.py documentation Documentation

First we set the multiselect attribute of the table_options to true to display the check box in the leftmost column of the
“Tracks” table for the user to select the records and create the Set media type button in the on_view_form_created
event handler in the client module of “Tracks”.

function on_view_form_created(item) {
item.table_options.multiselect = true;
item.add_view_button('Set media type').click(function() {

set_media_type(item);
});

}

When this button is pressed, the set_media_type function defined in the module is executed.

In this function we create a copy of the “Tracks” item. We pass to the copy method the handlers option equal to false.
It means that all the settings to the item made in the Form Dialogs in the Application Builder and all the functions and
events defined in the client module of the item will be unavailable to the copy.

Then we analyze the selections attribute that is the array of the values of primary key field of the records, selected by
the user.

After it we initialize the dataset of the copy by calling the open method with open_empty option. We also set the fields
options so that the dataset will have only one field media_type. We set the required attribute of that field to true.

And finally, before calling the append_record method, we dynamically assign the on_edit_form_created event handler
to change the on click event of the OK button, that was defined in the client module of the task.

In the new on click event handler we, first, call the post method to check that the media type value is set, if exception
is raised we call edit method to allow the user to set it.

132 Chapter 5. How to

Jam.py documentation Documentation

function set_media_type(item) {
var copy = item.copy({handlers: false}),

selections = item.selections;
if (selections.length > 1000) {

item.alert('Too many records selected.');
}
else if (selections.length || item.rec_count) {

if (selections.length === 0) {
selections = [item.id.value];

}

copy.open({fields: ['media_type'], open_empty: true});

copy.edit_options.title = 'Set media type to ' + selections.length +
' record(s)';

copy.edit_options.history_button = false;
copy.media_type.required = true;

copy.on_edit_form_created = function(c) {
c.edit_form.find('#ok-btn').off('click.task').on('click', function() {

try {
c.post();
item.server('set_media_type', [c.media_type.value, selections],
function(res, error) {

if (error) {
item.alert_error(error);

}
if (res) {

item.selections = [];
item.refresh_page(true);
c.cancel_edit();
item.alert(selections.length + '
record(s) have been modified.');

}
}

);
}
finally {

c.edit();
}

});
};
copy.append_record();

}
}

When the user clicks the OK button, the item’s server method executes the set_media_type function on the
server, which changes the field value of the selected records.

After changing the records on the server we, on the client, unselect the records, refresh the data of the page, cancel
editing by calling the cancel_edit method and inform the user of the results.

def set_media_type(item, media_type, selections):
copy = item.copy()
copy.set_where(id__in=selections)
copy.open(fields=['id', 'media_type'])
for c in copy:

(continues on next page)

5.14. How change field value of selected records 133

Jam.py documentation Documentation

(continued from previous page)

c.edit()
c.media_type.value = media_type
c.post()

c.apply()
return True

5.15 How to save edit form without closing it

You can do it by adding a button that will save the record without closing the edit form.

Below is examples for synchronous and asynchronous cases.

function on_edit_form_created(item) {
var save_btn = item.add_edit_button('Save and continue');
save_btn.click(function() {

if (item.is_changing()) {
item.post();
try {
item.apply();

}
catch (e) {
item.alert_error(error);

}
item.edit();

}
});

}

function on_edit_form_created(item) {
var save_btn = item.add_edit_button('Save and continue');
save_btn.click(function() {

if (item.is_changing()) {
item.disable_edit_form();
item.post();
item.apply(function(error){

if (error) {
item.alert_error(error);

}
item.edit();
item.enable_edit_form();

});
}

});
}

5.16 How to save changes to two tables in same transaction on the
server

Below is two examples.

In the first example each apply method gets its own connection from connection pool and commits it after saveing
changes to the database.

134 Chapter 5. How to

Jam.py documentation Documentation

In the second example the connection is received from connection pool and passed to each apply method so changes
are commited at the end.

import datetime

def change_invoice_date(item, invoice_id):
now = datetime.datetime.now()

invoices = item.task.invoices.copy(handlers=False)
invoices.set_where(id=invoice_id)
invoices.open()
invoices.edit()
invoices.invoice_date.value = now
invoices.post()
invoices.apply()

customer_id = invoices.customer.value
customers = item.task.customers.copy(handlers=False)
customers.set_where(id=customer_id)
customers.open()
customers.edit()
customers.last_modified.value = now
customers.post()
customers.apply()

import datetime

def change_invoice_date(item, invoice_id):
now = datetime.datetime.now()

con = item.task.connect()
try:

invoices = item.task.invoices.copy(handlers=False)
invoices.set_where(id=invoice_id)
invoices.open()
invoices.edit()
invoices.invoice_date.value = now
invoices.post()
invoices.apply(con)

customer_id = invoices.customer.value
customers = item.task.customers.copy(handlers=False)
customers.set_where(id=customer_id)
customers.open()
customers.edit()
customers.last_modified.value = now
customers.post()
customers.apply(con)

con.commit()
finally:

con.close()

5.17 How to prevent duplicate values in a table field

One of the ways to do it is to write the on_apply event handler.

5.17. How to prevent duplicate values in a table field 135

Jam.py documentation Documentation

In the example below, the delta parameter is a dataset that contains the changes that will be stored in the users table.

We go through the records of changes and if the record was not deleted or the login field didn’t change we look for a
record in the table with the same login and if it exists raise the exception. If the user is editing the record on the client
using an edit form he won’t be able to save it and will see the corresponding alert message.

def on_apply(item, delta, params, connection):
for d in delta:

if not (d.rec_deleted() or d.rec_modified() and d.login.value == d.login.old_
→˓value):

users = d.task.users.copy(handlers=False)
users.set_where(login=d.login.value)
users.open(fields=['login'])
if users.rec_count:

raise Exception('There is a user with this login - %s' % d.login.
→˓value)

5.18 How to implement some sort of basic multi-tenancy? For exam-
ple, to have users with separate data.

You can implement a multi-tenancy using Jam.py.

For example, if some item have a user_id field, the following code in the server module of the item will do the job:

def on_open(item, params):
if item.session:

user_id = item.session['user_info']['user_id']
if user_id:

params['__filters'].append(['user_id', item.task.consts.FILTER_EQ, user_
→˓id])

def on_apply(item, delta, params, connection):
if item.session:

user_id = item.session['user_info']['user_id']
if user_id:

for d in delta:
if d.rec_inserted():

d.edit()
d.user_id.value = user_id
d.post()

elif d.rec_modified():
if d.user_id.old_value != user_id:

raise Exception('You are not allowed to change record.')
elif d.rec_deleted():

if d.user_id.old_value != user_id:
raise Exception('You are not allowed to delete record.')

It uses a session attribute of the item to get a unique user id and on_open and on_apply event handlers.

The on_open event handler ensures that the sql select statement that applications generates will return only records
where the user_id field will be the same as the ID of the user that sends the request.

And the on_apply event handler sets the user_id to the ID of the user that appended or modified the records.

You can use a more general approach and add the following code to the server module of the task. Then a multi-tenancy
will be applied to every item that have a user_id field:

136 Chapter 5. How to

Jam.py documentation Documentation

def on_open(item, params):
if item.field_by_name('user_id'):

if item.session:
user_id = item.session['user_info']['user_id']
if user_id:

params['__filters'].append(['user_id', item.task.consts.FILTER_EQ,
→˓user_id])

def on_apply(item, delta, params, connection):
if item.field_by_name('user_id'):

if item.session:
user_id = item.session['user_info']['user_id']
if user_id:

for d in delta:
if d.rec_inserted():

d.edit()
d.user_id.value = user_id
d.post()

elif d.rec_modified():
if d.user_id.old_value != user_id:

raise Exception('You are not allowed to change record.')
elif d.rec_deleted():

if d.user_id.old_value != user_id:
raise Exception('You are not allowed to delete record.')

5.19 Can I use Jam.py with existing database

Please read this: Intergation with existing database

5.20 How can I use data from other database tables

You can use data from other database tables.

First you must specify table name and fields information. You can do it the following way:

• Select project node in the task tree and click Database button.

• Set DB manual mode and specify the database connection attributes.

• Import tables information as described in the Integration with existing database

• Select project node in the task tree, click Database button restore previous values.

Then in the server module of the new items you must add code to read and write the data to the database

Below is the code for MySQL database (auto incremented primary field):

import MySQLdb
from jam.db import mysql

def on_open(item, params):
connection = item.task.create_connection_ex(mysql, database='demo', \

user='root', password='111', host='localhost', encoding='UTF8')
try:

sql = item.get_select_query(params, mysql)

(continues on next page)

5.19. Can I use Jam.py with existing database 137

Jam.py documentation Documentation

(continued from previous page)

rows = item.task.select(sql, connection, mysql)
finally:

connection.close()
return rows, ''

def on_apply(item, delta, params):
connection = item.task.create_connection_ex(mysql, database='demo', \

user='root', password='111', host='localhost', encoding='UTF8')
try:

sql = delta.apply_sql(params, mysql)
result = item.task.execute(sql, None, connection, mysql)

finally:
connection.close()

return result

If database use generators to get primary field values you must specify them for new records (Firebird):

import fdb
from jam.db import firebird

def on_open(item, params):
connection = item.task.create_connection_ex(firebird, database='demo.fdb', \

user='SYSDBA', password='masterkey', encoding='UTF8')
try:

sql = item.get_select_query(params, firebird)
rows = item.task.select(sql, connection, firebird)

finally:
connection.close()

return rows, ''

def get_id(table_name, connection):
cursor = connection.cursor()
cursor.execute('SELECT NEXT VALUE FOR "%s" FROM RDB$DATABASE' % (table_name + '_

→˓SEQ'))
r = cursor.fetchall()
return r[0][0]

def on_apply(item, delta, params):
connection = item.task.create_connection_ex(firebird, database='demo.fdb', \

user='SYSDBA', password='masterkey', encoding='UTF8')
for d in delta:

if not d.id.value:
d.edit()
d.id.value = get_id(item.table_name, connection)
for detail in d.details:

for r in detail:
if not r.id.value:

r.edit()
r.id.value = get_id(r.table_name, connection)
r.post()

d.post()
try:

sql = delta.apply_sql(params, firebird)
result = item.task.execute(sql, None, connection, firebird)

finally:
connection.close()

return result

138 Chapter 5. How to

Jam.py documentation Documentation

You can use the task on_open and on_apply events. Below is the code from task client module:

import MySQLdb
from jam.db import mysql

def on_open(item, params):
if item.item_name in ['table1', 'table2']: # or
#if item.table_name in ['table1', 'table2']:

connection = item.task.create_connection_ex(mysql, database='demo', \
user='root', password='111', host='localhost', encoding='UTF8')

try:
sql = item.get_select_query(params, mysql)
rows = item.task.select(sql, connection, mysql)

finally:
connection.close()

return rows, ''

def on_apply(item, delta, params):
if item.item_name in ['table1', 'table2']:
connection = item.task.create_connection_ex(mysql, database='demo', \

user='root', password='111', host='localhost', encoding='UTF8')
try:

sql = delta.apply_sql(params, mysql)
result = item.task.execute(sql, None, connection, mysql)

finally:
connection.close()

return result

Note: Do not set History attribute to True for this tables. If you do so you’ll get the exception. History table must be
one for all databases that you use in the project. You can try to create the history table in the other database and write
the on_open and on_apply event handlers for it.

5.21 How I can process a request or get some data from other appli-
cation or service

You can access the data of your application for reading and writing by sending a post request that has ‘ext’ added to
url. For example:

http://example.com/ext/edit

When an web app on the server receives such request it generates the on_ext_request event

5.22 How can I perform calculations in the background

You can use this code in the task server module to run a background thread in the web application once a 3 minutes
(can be changed by setting interval) to perform some calculations:

import threading
import time
import traceback

(continues on next page)

5.21. How I can process a request or get some data from other application or service 139

Jam.py documentation Documentation

(continued from previous page)

def background(task):
interval = 3 * 60
time.sleep(interval)
while True:

if not time:
return

with task.lock('background'):
try:

print('background')
some code to execute in background for example:
tracks = task.tracks.copy()
tracks.open()
for t in tracks:
t.edit()
t.sold.value = #some value
t.post()
tracks.apply()

except Exception as e:
traceback.print_exc()

time.sleep(interval)

def on_created(task):
bg = threading.Thread(target=background, args=(task,))
bg.daemon = True
bg.start()

Note: When multiple web applications are running in parallel processes, the background function will be executed in
each process. To prevent simultaneous execution of this function, we use the lock method of the task.

5.23 Is it supported to have details inside details?

Yes, you can have details inside details.

Suppose we have three objects - “Polls”, “Questions” and “Answers.” “Answers” is a detail of “Questions”. We will
make “Questions” a detail of “Polls”.

One way to do this is to add an integer field “poll” to the “Questions” and the following code to the “Poll” client
module:

function on_edit_form_created(item) {
var q = task.questions.copy();

item.edit_form.find('.form-footer').hide();

q.view_options.form_header = false;

q.on_view_form_created = function(quest) {
quest.paginate = false;

};

q.on_before_append = function(quest) {
if (!item.id.value) {

(continues on next page)

140 Chapter 5. How to

Jam.py documentation Documentation

(continued from previous page)

quest.alert_error('Poll is not specified.');
quest.abort();

}
};

q.on_before_post = function(quest) {
quest.poll.value = item.id.value;

};

q.set_where({poll: item.id.value});
q.view(item.edit_form.find('.edit-detail'));

}

function on_field_changed(field, lookup_item) {
var item = field.owner;
item.apply();
item.edit();

}

function on_before_delete(item) {
var q = task.questions.copy();
q.set_where({poll: item.id.value});
q.open();
while (!q.eof()) {

q.delete();
}
q.apply();

}

5.23. Is it supported to have details inside details? 141

Jam.py documentation Documentation

5.24 Export to / import from csv files

First, in the client module of the item we create two buttons that execute the corresponding functions when you click
on them:

function on_view_form_created(item) {
var csv_import_btn = item.add_view_button('Import csv file'),

csv_export_btn = item.add_view_button('Export csv file');
csv_import_btn.click(function() { csv_import(item) });
csv_export_btn.click(function() { csv_export(item) });

}

function csv_export(item) {
item.server('export_csv', function(file_name, error) {

if (error) {
item.alert_error(error);

}
else {

var url = [location.protocol, '//', location.host, location.pathname].
→˓join('');

url += 'static/files/' + file_name;
window.open(encodeURI(url));

}
(continues on next page)

142 Chapter 5. How to

Jam.py documentation Documentation

(continued from previous page)

});
}

function csv_import(item) {
task.upload('static/files', {accept: '.csv', callback: function(file_name) {

item.server('import_csv', [file_name], function(error) {
if (error) {

item.warning(error);
}
item.refresh_page(true);

});
}});

}

These functions execute the following functions defined in the server module. In this module we use the Python csv
module. We do not export system fields - primary key field and deletion flag field.

Below is the code for Python 3:

import os
import csv

def export_csv(item):
copy = item.copy()
copy.open()
file_name = item.item_name + '.csv'
path = os.path.join(item.task.work_dir, 'static', 'files', file_name)
with open(path, 'w', encoding='utf-8') as csvfile:

fieldnames = []
for field in copy.fields:

if not field.system_field():
fieldnames.append(field.field_name)

writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for c in copy:

dic = {}
for field in copy.fields:

if not field.system_field():
dic[field.field_name] = field.text

writer.writerow(dic)
return file_name

def import_csv(item, file_name):
copy = item.copy()
path = os.path.join(item.task.work_dir, 'static', 'files', file_name)
with open(path, 'r', encoding='utf-8') as csvfile:

copy.open(open_empty=True)
reader = csv.DictReader(csvfile)
for row in reader:

print(row)
copy.append()
for field in copy.fields:

if not field.system_field():
field.text = row[field.field_name]

copy.post()
copy.apply()

For Python 2, this code looks like this:

5.24. Export to / import from csv files 143

Jam.py documentation Documentation

import os
import csv

def export_csv2(item):
copy = item.copy()
copy.open()
file_name = item.item_name + '.csv'
path = os.path.join(item.task.work_dir, 'static', 'files', file_name)
with open(path, 'wb') as csvfile:

fieldnames = []
for field in copy.fields:

if not field.system_field():
fieldnames.append(field.field_name.encode('utf8'))

writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for c in copy:

dic = {}
for field in copy.fields:

if not field.system_field():
dic[field.field_name.encode('utf8')] = field.text.encode('utf8')

writer.writerow(dic)
return file_name

def import_csv2(item, file_name):
copy = item.copy()
path = os.path.join(item.task.work_dir, 'static', 'files', file_name)
with open(path, 'rb') as csvfile:

item.task.execute('delete from %s' % item.table_name)
copy.open(open_empty=True)
reader = csv.DictReader(csvfile)
for row in reader:

print(row)
copy.append()
for field in copy.fields:

if not field.system_field():
field.text = row[field.field_name.encode('utf8')].decode('utf8')

copy.post()
copy.apply()

5.25 Authentication

In the Jam.py repository there is the “Authentication” project export file. This project demonstrates the first three
topics of this section.

http://jam-py.com/repository/auth.zip

You can download it, create a new project and import this file.

5.25.1 How to authenticate from custom users table

By default, all user information is stored in a table in the admin.sqlite database. This table has a fixed structure that
cannot be changed.

In this section, we describe how to authenticate a user using data from the custom users table.

First, we create an item group Authentication select it and add an item Users that has the following fields:

144 Chapter 5. How to

http://jam-py.com/repository/auth.zip

Jam.py documentation Documentation

We won’t store in the table the user password and use this field in the interface. We will store the password salted hash
in the password_hash field.

We also created the lookup list “Roles” that we used in the “Roles” field definition.

We added to it the same roles (ids and names) as in the table Roles We ‘ll have to sycronize this roles in the future.

5.25. Authentication 145

Jam.py documentation Documentation

In the Roles it is necessary to allow view the Users item only people that will be responsible for it

We removed password_hash field from field lists in the View Form Dialog and Edit Form Dialog

In the User server module we define the following on_apply event handler:

def on_apply(item, delta, params, connection):
for d in delta:

if not (d.rec_deleted() or d.rec_modified() and d.login.value == d.login.old_
→˓value):

users = d.task.users.copy(handlers=False)
users.set_where(login=d.login.value)
users.open(fields=['login'])
if users.rec_count:

raise Exception('There is a user with this login - %s' % d.login.
→˓value)

(continues on next page)

146 Chapter 5. How to

Jam.py documentation Documentation

(continued from previous page)

if d.password.value:
d.edit();
d.password_hash.value = delta.task.generate_password_hash(d.password.

→˓value)
d.password.value = None
d.post();

In this event handler we check if there is a users with the same login and raise the exception if such user exists,
otherwise we generate hash using the generate_password_hash method of the task and set the password value to
None.

In the client module we defined the following on_field_get_text event handler. It displays ‘******’ string insted of the
password.

function on_field_get_text(field) {
var item = field.owner;
if (field.field_name === 'password') {

if (item.id.value || field.value) {
return '**********';

}
}

}

Finally, we define the on_login event handler in the task server module:

def on_login(task, form_data, info):
users = task.users.copy(handlers=False)
users.set_where(login=form_data['login'])
users.open()
if users.rec_count == 1:

if task.check_password_hash(users.password_hash.value, form_data['password']):
return {

'user_id': users.id.value,
'user_name': users.name.value,
'role_id': users.role.value,
'role_name': users.role.display_text

}

Now we must add an admin to Users that has rights to work with users. After that we can set Safe mode in the project
Parameters

5.25.2 How to create registration form

In this topic we’ll assume that you have created a Users item from the previous topic.

Now we create a register.html file.

It contains a registration form:

<form id="login-form" target="dummy" class="form-horizontal" style="margin: 0;">
<div class="control-group">

<label class="control-label" for="name">Name</label>
<div class="controls">

<input type="text" id="name" placeholder="Login">
</div>

</div>
(continues on next page)

5.25. Authentication 147

Jam.py documentation Documentation

(continued from previous page)

<div class="control-group">
<label class="control-label" for="login">Login</label>
<div class="controls">

<input type="text" id="login" placeholder="Login">
</div>

</div>
<div class="control-group">

<label class="control-label" for="password1">Password</label>
<div class="controls">

<input type="password" id="password1"
placeholder="Password" autocomplete="on">

</div>
</div>
<div class="control-group">

<label class="control-label" for="password2">Repeat password</label>
<div class="controls">

<input type="password" id="password2"
placeholder="Repeat password" autocomplete="on">

</div>
</div>
<div class="alert alert-success" style="margin: 0; display: none">

You have been successfully registered.
</div>
<div class="alert alert-error" style="margin: 0; display: none">
</div>
<div class="form-footer">

<input type="button" class="btn expanded-btn pull-right"
id="register-btn" value="OK" tabindex="3">

</div>
</form>

and a javascript code:

$(document).ready(function(){

function register(name, login, password) {
$.ajax({

url: "ext/register",
type: "POST",
contentType: "application/json;charset=utf-8",
data: JSON.stringify([name, login, password]),
success: function(response, textStatus, jQxhr) {

if (response.result.data) {
show_alert(response.result.data);

}
else {

$("div.alert-success").show();
setTimeout(

function() {
window.location.href = "index.html";

},
1000

);
}

},
error: function(jqXhr, textStatus, errorThrown) {

console.log(errorThrown);
(continues on next page)

148 Chapter 5. How to

Jam.py documentation Documentation

(continued from previous page)

}
});

}
function show_alert(message) {

$("div.alert-error")
.text(message)
.show();

}

$('input').focus(function() {
$("div.alert").hide();

});

$("#register-btn").click(function() {
var name = $("#name").val(),

login = $("#login").val(),
password1 = $("#password1").val(),
password2 = $("#password2").val();

if (!name) {
show_alert('Name is not specified');

}
else if (!login) {

show_alert('Login is not specified');
}
else if (!password1) {

show_alert('Password is not specified');
}
else if (password1 !== password2) {

show_alert('Passwords do not match');
}
else {

register(name, login, password1)
}

})
})

When the user clicks on the OK button, the javascript will send to the server the ajax post request with url “ext/register”
and parameters “name, login, password”.

When server receives the request starting with ‘ext/’ it triggers the on_ext_request event.

The task server module has the following on_ext_request event handler:

def on_ext_request(task, request, params):
reqs = request.split('/')
if reqs[2] == 'register':

name, login, password = params
users = task.users.copy(handlers=False)
users.set_where(login=login)
users.open()
if users.rec_count:

return 'Existing login, please use different login'
users.append()
users.name.value = name
users.login.value = login
users.password_hash.value = task.generate_password_hash(password)
users.role.value = 2

(continues on next page)

5.25. Authentication 149

Jam.py documentation Documentation

(continued from previous page)

users.post()
users.apply()

It checks if there is ‘register’ in url and then looks if there is no user with the login and then register the user.

5.25.3 How to give user ability to change the password

First we create a “Change password” item. While creating it we set the “Virtual table” and “Visible” attributes to false
in the Item Editor Dialog. And we add to it two fields: “Old password”, “New password”

We’ll use this item for displaying “Change password” dialog.

To open this dialog we add a “Change password” menu item with id “pass” in the index.html:

<div class="container">
<div id="taskmenu" class="navbar">

<div class="navbar-inner">
<ul id="menu" class="nav">

<ul id="menu-right" class="nav pull-right">

<li id="pass">Change password

</div>
</div>

</div>

and in the task client module on_page_loaded event handler add the following code:

if (task.change_password.can_view()) {
$("#menu-right #pass a").click(function(e) {

e.preventDefault();
task.change_password.open({open_empty: true});
task.change_password.append_record();

});
}
else {

$("#menu-right #pass a").hide();
}

It will check if the user has the right to view item and then opens an empty dataset and creates an edit form, otherwise
it hides this menu item.

In the “Change password” client module we add the following code:

function on_edit_form_created(item) {
item.edit_form.find("#ok-btn")

.off('click.task')

.on('click', function() {
change_password(item);

});
item.edit_form.find("#cancel-btn")

.off('click.task')

.on('click', function() {
item.close_edit_form();

});
}

(continues on next page)

150 Chapter 5. How to

Jam.py documentation Documentation

(continued from previous page)

function change_password(item) {
item.post();
item.server('change_password', [item.old_password.value, item.new_password.value],

→˓ function(res) {
if (res) {

item.warning('Password has been changed.
 The application will be
→˓reloaded.',

function() {
task.logout();
location.reload();

});
}
else {

item.alert_error("Can't change the password.");
item.edit();

}
});

}

function on_field_changed(field, lookup_item) {
var item = field.owner;
if (field.field_name === 'old_password') {

item.server('check_old_password', [field.value], function(error) {
if (error) {

item.alert_error(error);
}

});
}

}

function on_edit_form_close_query(item) {
return true;

}

In it we reassign OK and Cancel button click events. By default they are defined in the task client module to save
record changes to the database and cancel editing. In the on_edit_form_close_query even handler we return
true so the on_edit_form_close_query declared in the task client module, that shows “Yes No Cancel” disalog
won’t be executed.

The on_field_changed event handler will check if old password is correct. It and the change_password
function send requests to the server to execute functions defined in the item server module:

def change_password(item, old_password, new_password):
user_id = item.session['user_info']['user_id']
users = item.task.users.copy(handlers=False)
users.set_where(id=user_id)
users.open()
same_password = item.task.check_password_hash(users.password_hash.value, old_

→˓password)
if users.rec_count== 1 and same_password:

users.edit()
users.password_hash.value = item.task.generate_password_hash(new_password)
users.post()
users.apply()
return True

else:
(continues on next page)

5.25. Authentication 151

Jam.py documentation Documentation

(continued from previous page)

return False

def check_old_password(item, old_password):
user_id = item.session['user_info']['user_id']
users = item.task.users.copy(handlers=False)
users.set_where(id=user_id)
users.open()
same_password = item.task.check_password_hash(users.password_hash.value, old_

→˓password)
if users.rec_count == 1 and same_password:

return
else:

return 'Invalid password'

They use session to get id of the current user.

After changing the password the client reloads.

152 Chapter 5. How to

CHAPTER 6

Business application builder

Application builder - is a Jam.py web application intended for application development and database administration.

To run the Application builder go to a Web browser and type in the browser address bar

127.0.0.1:8080/builder.html

Note: Please note that server.py must be running

On the left side of the Application builder page there is a panel that contains the project tree. When you select any
node of the project tree, as a rule, its content will be opened in the central part of the page, and the bottom and right
side of the page may have buttons that allow you to modify the content.

To see the changes made in Application builder go to the Project page and reload it.

6.1 Sanitizing

To prevent Cross Site Scripting (XSS) attacks, Jam.py sanitizese field values displayed in the table columns.

For example, if field contains the following text:

"USA"

when unsanitized it will be displayed in the table column as follows:

153

Jam.py documentation Documentation

When the field text sanitized, it is transformed to the following:

"USA"

as you can see symbols ‘<’ and ‘>’ are replaced with ‘<’ and ‘>’ and the table column will be displayed this
way:

There are two ways to prevent sanitizing.

First is to set Do not sanitize attribute in the Interface tab in the Field Editor Dialog

154 Chapter 6. Business application builder

Jam.py documentation Documentation

Second is to write the on_field_get_html event handler. If the this event handler returns a value it is not sanitized.

6.2 Accept string

An accept string can be a combination of the following values, separated by comma.

Value Description
file_extension Specify the file extension(s) (e.g: .gif, .jpg, .png, .doc)
audio/* All sound files
video/* All video files
image/* All image files

For example:

6.2. Accept string 155

Jam.py documentation Documentation

.pdf,.xls

image/*,.pdf,.xls

audio/*

audio/*,video/*

6.3 Project management

After the Application builder is first run or when the Project node is selected in the project tree, the Application builder
page will look as follows:

Click on the links below to see the purpose of the buttons in the right panel of the page.

6.3.1 Parameters

After clicking on the Parameters button the Parameters Dialog will appear. It has two tabs General and Interface.

156 Chapter 6. Business application builder

Jam.py documentation Documentation

General tab

On the General tab, you can specify general parameters of the project:

6.3. Project management 157

Jam.py documentation Documentation

• Production - if this checkbox is checked, you will not be able to change the project database in Application
Builder.

• Safe mode - if safe mode is enabled, authentication is needed for user to work in the system (See Users and
Roles).

• Debugging - if this checkbox is checked, the Werkzeug library debugger will be invoked when an error on the
server occurs.

• Language - use it to open Language Dialog. See Language support

• Persistent connection - if this checkbox is checked the application creates a connection pool otherwise a con-
nection is created before executing the sql query.

• Connection pool size — the size of the server database connection pool.

• Compressed JS, CSS files - If this button is checked the server returns compressed js and css files when
index.html page is loaded.

• All JS modules in a single file - If this checkbox is unchecked, the application will generate a javascript
file in the project js folder for every item in the task tree, that has code in its Client module, with the name
item_name.js, where item_name is the name of an item. Otherwise, the application will generate a javascript
file with the name task_name.js, where task_name is the name of the project task (for example demo.js), that
will contain javascript code of all items, except items, whose External js module checkbox in the Item Editor
Dialog is checked (separate files will be created for them).

• Dynamic JS modules loading - If this checkbox is unchecked and the application generates more than one
javascript file, only file named task_name.js will be loaded when application is run. All other files must be
loaded dynamically. See Working with modules.

• History item - to specify item, that will store change history, see Saving audit trail/change history made by
users

• Session timeout (seconds) - number of second of inactivity that is allowed before the session expires.

• Session ignore change ip - if false, the session is only valid when it is accessed from the same ip address that
created the session.

• Max content length (MB) - use it to limit the total content length of the request to the server, in megabytes.

• Import delay (seconds) - if set the application will wait the number of seconds set in the parameter before
changing the project dataset while importing project metadata , otherwise it waits for 5 minutes or until all
previous request to the server in the current process will be processed.

• Delete reports after (hours) - if a value is specified the generated reports that are located in the static/reports
folder will be deleted after specified number of hours have passed.

• Upload file extensions - is an Accept string that defines the types of files that could be uploaded to the server
by the task upload method. Uploading files that do not match these types is prohibited.

• Version — specify the version of the project here.

Note: When Connection pool size or Persistent connection parameters are changed, the server application must be
restarted for changes to take effect.

158 Chapter 6. Business application builder

Jam.py documentation Documentation

Interface tab

On the Interface tab, you can specify interface parameters of the project:

• Theme - use this parameter to select the theme of the project from one of predefined themes

• Small font - if this button is checked, the default font size will be 12px, otherwise it is 14px

• Full width - if this button is checked the project will fill the page width, without left and right margins

• Display forms in tabs - if this button is checked, the forms will be opened tabs

6.3. Project management 159

Jam.py documentation Documentation

6.3.2 Database

In this dialog project database parameters are displayed. When they have been changed and OK button is clicked, the
Application builder will check connection to the database and if it failed to connect an error will be displayed.

Note: When any Database parameter is changed, except DB manual update, the server application must be restarted
for changes to take effect.

If DB manual update checkbox is unchecked (default), then when changes to an item, that have an associated database
table, are saved, this database table is automatically modified. For example, if we add a new field to some item in the
Item Editor Dialog , the new field will be added to the associated database table. If this checkbox is checked, no
modifications to the database tables are made.

Note: Please be very careful when using this option.

Examples of database setups

160 Chapter 6. Business application builder

Jam.py documentation Documentation

SQLite

6.3. Project management 161

Jam.py documentation Documentation

PostgreSQL

162 Chapter 6. Business application builder

Jam.py documentation Documentation

MySql

6.3. Project management 163

Jam.py documentation Documentation

FireBird

164 Chapter 6. Business application builder

Jam.py documentation Documentation

MSSQL

6.3. Project management 165

Jam.py documentation Documentation

Oracle

6.3.3 Export

Press this button to export project metadata to zip file.

See also

Import

Metadata file

How to migrate development to production

6.3.4 Import

Use this button to import project metadata from zip file.

166 Chapter 6. Business application builder

Jam.py documentation Documentation

See also

Export

Metadata file

How to migrate development to production

6.3.5 Find

Press this button to to search for the character string in all modules of the project.

6.3.6 Print

Press this button to print all modules of the project.

6.3.7 Export/import metadata

All the code, parameters and data structure information of the project is stored in the admin.sqlite SQLite database
located in the project folder. This information we call the metadata.

Export metadata

The project metadata can be exported to a zip file in the Application Builder by clicking the Export button.

This file contains the following information:

• Information about project data structure (information about DB tables, fields, indexes defined in the project
items), code and settings that is stored in the admin.sqlite database.

• Files from the following folders:

– css

– js

6.3. Project management 167

Jam.py documentation Documentation

– static/css

– static/js

– static/img

– reports (ods files of project report templates)

– utils (this folder may contain python libraries or files used in the project)

Import metadata

The metadata file can be imported to another project.

The web application while importing the metadata performs the following operations:

1. sets the under_maintenance flag so that incoming requests are not processed by the application. When receiving
the response to theses requests the client application shows the message “Web site currently under maintenance”.
Web applications that run in parallel processes upon receiving requests check whether the under_maintenance
flag is set and, if so, also do not process requests.

2. unzips the metadata file to the temporary folder in the project directory

3. checks the data integrity - items with the same ID in the current project and imported metadata must have the
same type and the same table_name attribute if one is specified for an item

4. analyzes the metadata to generate sql queries to update the project database structure and records of the ad-
min.sqlite database.

5. if the Import delay attribute in the project Parameters is set, waits the number of seconds set in the attribute,
otherwise waits for 5 minutes or until all previous request to the server will be processed.

6. updates the project database and modifies the records of the admin.sqlite, see bellow

7. copies files from the temporary folder to the project folder

8. reloads the task tree

9. writes the import log file to the logs folder and sends the import log to the Application builder to be displayed

10. deletes the temporary folder

11. removes the under_maintenance flag

12. increases the build flag, so web applications that run in parallel processes and monitor this flag reload their task
tree

Updating project databases

The way the the project database is updated depends on the type of the project database.

• Updating databases that support DDL statement rollback (Postgress, Firebird, MSSQL)

– creates the connection to the project database

– starts to execute sql statements to update the project database.

– if an error occurs while updating the project database, rollbacks the changes, and goes to the step 9.

– after the project database has been updated, makes a copy of the admin.sqlite file and starts modifying the
admin.sqlite database

– if an error occurs while modifying the records of admin.sqlite, restores admin.sqlite from the copy, roll-
backs the changes to the project database and goes to the step 9.

168 Chapter 6. Business application builder

Jam.py documentation Documentation

– commits the changes, deletes the copy of the admin.sqlite, closes connection and goes to the step 7.

• Updating databases that do not support DDL statement rollback (MySql, Oracle)

– creates the connection to the project database

– starts to execute sql statements to update the project database.

– if an error occurs while updating the project database writes error to the import log and continues until all
statements will be processed

– commits the changes

– starts modifying the admin.sqlite database

– closes connection and goes to the step 7.

Causes of errors

Due to the fact that all items and fields of Jam.py projects have a unique ID attribute, Jam.py very accurately generates
sql queries to modify the project database.

While generating sql queries the application currently compares only metadata in the current and imported project.
The errors can occur when the application, for example, tries to adds to a table a field that doesn’t exist in the current
project metadata but exists in the database table, you created this field outside of Application Builder. This situations
can be corrected using Manual mode in Application Builder, see Database, and changing the database.

If you won’t change tables, field and indexes of production database, there will be no problems. Carry out development
on the development project and then import its metadata into production.

Note: For the databases that do not support DDL statement rollback (MySql, Oracle) we recommend that you make
a backup of the project database and admin.sqlite before performing the import.

Note: For SQLite database, Jam.py doesn’t support importing of metadata into an existing project (project with tables
in the database). You can only import metadata into a new project.

6.4 Roles

Select Roles node in the project tree to create and modify roles that defined users privileges. Each user must be
assigned to one of roles defined in the project. A role defines the user’s rights to view, create, modify, and delete data.

To add or delete a role, use New and Delete buttons. To set permissions for a role, select the role in a role list and put
or remove a check mark next to the appropriate column by clicking on it with the mouse: View, Create, Edit, Delete
(allowed to view, create, modify and delete, respectively).

6.4. Roles 169

Jam.py documentation Documentation

6.5 Users

If the Safe mode checkbox in the project parameters is checked, authentication is needed for a user to work in the
system.

But before that, the user must be registered in the framework. To register a user select Users node, click New and fill
in the form that appears:

170 Chapter 6. Business application builder

Jam.py documentation Documentation

• Name – user name

• Login - login

• Password - password

• Role – user role

• Information - some additional information

• Admin - if this flag is set, the user has the right to work in the Application builder.

6.5. Users 171

Jam.py documentation Documentation

6.5.1 See also

on_login event

6.6 Code editor

For every item of the project task tree there are two buttons in the upper-right corner of the Application builder : Client
module and Server module.

172 Chapter 6. Business application builder

Jam.py documentation Documentation

By clicking on these buttons the Code Editor for the client or server module of the item will be opened. (See Working
with modules)

To the left of the Editor there is an information pane with four tabs:

• Module - this tab displays all events and functions defined in the editor, double-click on one of them to move
the cursor to the proper function.

• Events - displays all the published event of the item, double-click to add a wrapper for the event at the current
cursor position (see the on_before_post event on the figure above).

• Task - the task tree, double-click on the node to enter the item_name at the current cursor position.

• Fields - the field list of the current item, double-click on one of the fields to enter the field_name at the current
cursor position.

To save changes click the OK button or press Ctrl-S.

To search the project modules, click the Find in project button or press Alt-F to display the Find inproject Dialog

Jam.py uses the ace editor editor to implement its code editor.

Hear are keyboard shortcuts for the ace editor.

6.6. Code editor 173

https://ace.c9.io
https://github.com/ajaxorg/ace/wiki/Default-Keyboard-Shortcuts

Jam.py documentation Documentation

6.7 Task

Select Task node to get to the root of the project task tree.

Press the Edit button in the bottom of the page to change the name and caption of the task.

Use buttons in the right panel of the page to edit

• Client and Server modules of the task, see Working with modules, Code editor

• index.html file from the project root folder that contains project page and templates of the forms, see Forms,
Code editor

• project.css file from css directory the project root folder, see Code editor

• Lookup lists - click on the button to open Lookup lists Dialog

174 Chapter 6. Business application builder

Jam.py documentation Documentation

6.8 Groups

Select the node with the name of the task to get to the groups of the project task tree.

At the bottom of the page there are 3 buttons:

• Delete - click the button to delete an empty group.

• Edit - click this button to modify the selected group, the corresponding Group Editor will appear.

• New - use this button to create a new group. After that the you have to select a new group type in the Dialog
box that will appear.

6.8. Groups 175

Jam.py documentation Documentation

There are groups of three types: Item group, Report group, Table group, see task tree. For each of this group, its own
editor will be shown:

6.8.1 Item Group Editor

Item Group Editor opens when a developer wants to create a new item group or modify an existing one. See Task
tree

The upper part of the Item Group Editor have the following fields:

• Caption - the group name that appears to users.

• Name - the name of the group that will be used in programming code to get access to the group object. It should
be unique in the project and should be a valid python identifier.

• Visible - use this checkbox to set group’s visible attribute. The value of this attribute can be used in code on the
client to create menu items and so on.

• Primary key field - by clicking on the button to the right of this attribute you can specify the common primary
key field for items that the group will own. You have to create this field first, see below

• Deleted flag field - by clicking on the button to the right of this attribute you can specify the common field that
will serve as a deleted flag for items that the group will own. You have to create this field first, see below

In the center part of the Item Group Editor dialog there is a table containing a list of fields, defined for the item.
These fields are common to all items the group will own.

To add, modify or delete a field use the following buttons:

• New - click the button to invoke the Field Editor Dialog to create a new field.

• Edit - click the button to invoke the Field Editor Dialog to modify a selected field.

• Delete - click the button to delete a field selected in in the field list.

In the bottom-right corner of the Dialog form there are two buttons:

• OK - click the button to save change you made.

• Cancel - click the buttons to cancel the operation.

Note: You can create new or modify existing fields and set Primary key field and Deleted flag field attributes only
when creating a new group or editing an empty one.

For existing item groups, that already own items you can only change Caption, Name and Visible attributes.

176 Chapter 6. Business application builder

Jam.py documentation Documentation

6.8.2 Report Group Editor

Report Group Editor opens when the developer wants to create a new report group or change an existing report
group.

The upper part of the Report Group Editor have the following fields:

• Caption - the group name that appears to users.

• Name - the name of the group that will be used in programming code to get access to the group object. It should
be unique in the project and should be a valid python identifier.

• Visible - use this checkbox to set group’s visible attribute. The value of this attribute can be used in code on the
client to create menu items and so on.

In the bottom-right corner of the Dialog form there are two buttons:

• OK - click the button to save change you made.

• Cancel - click the buttons to cancel the operation.

6.8. Groups 177

Jam.py documentation Documentation

6.8.3 Detail Group Editor

Detail Group Editor opens when a developer wants to create a new detail group or modify an existing one. See Task
tree

The upper part of the Detail Group Editor have the following fields:

• Caption - the group name that appears to users.

• Name - the name of the group that will be used in programming code to get access to the group object. It should
be unique in the project and should be a valid python identifier.

• Visible - use this checkbox to set group’s visible attribute. The value of this attribute can be used in code on the
client to create menu items and so on.

• Primary key field - by clicking on the button to the right of this attribute you can specify the common primary
field for items that the group will own. You have to create this field first, see below

• Deleted flag field - by clicking on the button to the right of this attribute you can specify the common field that
will serve as a deleted flag for items that the group will own. You have to create this field first, see below

• Master ID field - by clicking on the button to the right of this attribute you can specify the common field that
will store ID of a master item for all detail items that the group will own, see Details. You have to create this
field first, see below

• Master record id field - by clicking on the button to the right of this attribute you can specify the common field
that will store primary key value of a master item record for all detail items that the group will own, see Details.
You have to create this field first, see below

In the center part of the Detail Group Editor dialog there is a table containing a list of fields, defined for the item.
These fields are common to all items the group will own.

To add, modify or delete a field use the following buttons:

• New - click this button to invoke the Field Editor Dialog to create a new field.

• Edit - click this button to invoke the Field Editor Dialog to modify a selected field.

• Delete - click the button to delete a field selected in in the field list.

In the bottom-right corner of the Dialog form there are two buttons:

178 Chapter 6. Business application builder

Jam.py documentation Documentation

• OK - click the button to save change you made.

• Cancel - click the buttons to cancel the operation.

Note: You can create new or modify existing fields and set Primary key field, Deleted flag field and Master ID
field, Master record id field attributes only when creating a new group or editing an empty one.

For existing detail groups, that already own items you can only change Caption, Name and Visible attributes.

Use buttons in the right panel of the page to edit Client and Server modules of a selected group, see

• Working with modules,

• Code editor

6.8. Groups 179

Jam.py documentation Documentation

6.9 Items

Select a group node in the project tree to get access to items that this group owns, see Task tree.

At the bottom of the page there are 3 buttons:

• New - click on New to create a new item in the Item Editor Dialog

• Edit - use this button to modify item’s attributes as well to add, change or delete fields in the Item Editor Dialog

• Delete - click on the button to delete an item and its underlying database table.

You can use the up and down arrows to arrange the items in the list. This may be useful for creating a menu or display
it in some way on the web page.

The right panel of the page have following buttons:

• Client module - click on this button to open the Code editor to edit client module of an item, see Working with
modules.

• Server module - click on this button to open the Code editor to edit server module of an item, see Working with
modules.

• View Form - use this button to invoke the View Form Dialog to set how the view form will be displayed.

• Edit Form - use this button to invoke the Edit Form Dialog to set how the edit form will be displayed.

• Filters - use this button to invoke the Filters Dialog to create, modify and delete item filters. See Filters.

• Details - use this button to invoke the Details Dialog to add or remove details linked to the item.

180 Chapter 6. Business application builder

Jam.py documentation Documentation

• Order - use this button to invoke the Order Dialog to specify how records will be ordered by default. See open
method

• Indices - lick this button to open the Indices Dialog to create and delete indices for the item database table.

• Foreign keys - lick this button to open the Foreign Keys Dialog to create foreign keys for the database table.

• Reports - lick this button to open the Reports Dialog to specify reports that could printed for the item. A new
project has a function that can be used to create a dropup button to print the reports.

• Privileges - click this button to open a dialog to configure the privileges assigned to user roles for this item.

6.9.1 Item Editor Dialog

Item Editor dialog opens when a developer selects a Group node in the project tree of the Application builder and
click on the New or Edit button to create a new item or modify a selected one. See Items.

6.9. Items 181

Jam.py documentation Documentation

The upper part of the Item Editor dialog have the following fields:

• Caption - the item name that appears to users.

• Name - the name of the item that will be used in programming code to get access to the item object. It should
be unique in the project and should be a valid python identifier.

• Table - the name of the table that will be created in the project database. This name is specified when creating
an item, and can not be changed later.

• Primary key field - by clicking on the button to the right of this attribute you can specify the primary key field
for the item. If the primary key field was defined for the group that owns the item it will be displayed there by
default, otherwise you have to create this field first.

• Deleted flag field - by clicking on the button to the right of this attribute you can specify the field that will serve
as a deleted flag for the item. If the deleted flag field was defined for the group that owns the item it will be
displayed there by default, otherwise you have to create this field first.

• Visible - use this checkbox to set item’s visible attribute. The value of this attribute can be used in code on the
client to create menu items and so on.

• Soft delete - when this check-box is checked, the delete method does not erase a record physically from the
table, but uses this field to mark the record as deleted. See Common fields, delete method (server), delete
method (client).

• Virtual table - if this checkbox is checked, no database table will be created. Use this options to create an item
with in-memory dataset or to use its modules to write code. This checkbox must be set when creating an item

182 Chapter 6. Business application builder

Jam.py documentation Documentation

and can not be changed later.

• History - if this checkbox is checked, the application will saving for this item audit trail/change history made
by users, see Saving audit trail/change history made by users

• Edit lock - if this checkbox is checked, the application will use record locking while users concurrently edit a
record, see Record locking

In the center part of the Item Editor dialog there is a table containing a list of fields, defined for the item. To add,
modify or delete a field use the following buttons:

• New - click this button to invoke the Field Editor Dialog to create a new field.

• Edit - click this button to invoke the Field Editor Dialog to modify a selected field.

• Delete - click this button to delete a field selected in in the field list.

In the bottom-right corner of the Dialog form there are two buttons:

• OK - click this button to save change you made. If the Virtual table checkbox is not checked and DB manual
update parameter in the project Database Dialog is not set, the application will generate and execute SQL query
to update the item table in the project Database (changes made to the fields will be applied to the table).

• Cancel - click this buttons to cancel the operation.

6.9.2 Field Editor Dialog

Use the Field Editor Dialog to create a new or modify an existing field.

It has two tabs Field, Lookup and Interface.

6.9. Items 183

Jam.py documentation Documentation

Field tab

The Field tab have the following fields:

• Caption - the field name that appears to users.

• Name - the name of the field that will be used in programming code to get access to the field object. It should
be a valid python identifier.

• Type - type of the field — one of the following values:

– TEXT

– INTEGER

– FLOAT

– CURRENCY

– DATE

– DATETIME

– BOOLEAN

– LONGTEXT

– FILE

184 Chapter 6. Business application builder

Jam.py documentation Documentation

– IMAGE

• Size - the size of the field for text fields.

• Default value - the default value of the field, for boolean fields use 0 or 1

• Required - if this checkbox is checked, the post method will raise an exception if this field is empty. See
Modifying datasets.

• Read only - this checkbox is checked, the field value can not be changed in the interface controls created by the
create_inputs method on the client.

Lookup tab

• Lookup item - the lookup item for Lookup fields

• Lookup field - the lookup field for Lookup fields

• Lookup field 2 - the lookup field 2 for Lookup fields

• Lookup field 3 - the lookup field 3 for Lookup fields

• Master field - the master field for Lookup fields

• Typeahead - if this checkbox is checked, typeahead is enabled for the lookup field

• Lookup value list - use it to specify a lookup list for an integer field

6.9. Items 185

Jam.py documentation Documentation

Interface tab

• Mask - use this attribute to specify the field_mask

• TextArea - for text fields if this attribute is set the textarea element will be created for these fields in the Edit
Form Dialog

• Do not sanitize - set this attribute to prevent default sanitizing of the field value, see Sanitizing

• Alignment - determines the alignment of text in the controls that display this field.

• Placeholder - use this attribute to specify the placeholder that will be displayed by the field input.

• Help - if any text / html-message is specified, a question mark will be displayed to the right of the input, so
when the user moves the mouse pointer over this mark, a pop-up window appears displaying this message.

186 Chapter 6. Business application builder

Jam.py documentation Documentation

Interface tab for FILE field

• Download btn - uncheck the box to hide the download button (middle)

• Open btn - uncheck the box to hide the open button (right)

• Accept - the attribute specifies the types of files that can be loaded. This is an Accept string.

Note: Please note that Accept attribute is required. Uploaded files are checked on the server against this attribute.

6.9. Items 187

Jam.py documentation Documentation

Interface tab for Image field

• View width - specifies the width of an image in pixels when it is displayed in the table of the view form. If it
not specified the width is auto

• View height - specifies the height of an image in pixels when it is displayed in the table of the view form. If it
not specified the height is auto

• Edit width - specifies the width of an image in pixels when it is displayed in the edit form. If it not specified
the width is auto

• Edit height - specifies the height of an image in pixels when it is displayed in the edit form. If it not specified
the height is auto

• Capture from camera - if this checkbox is set, the user will be able to capture image from camera.

• Placeholder image - double-click the image to set the placeholder image, that will be displayed when field
image is not set. Hold Ctrl key and double-click the image to clear the placeholder image.

188 Chapter 6. Business application builder

Jam.py documentation Documentation

6.9.3 Edit Form Dialog

The Edit Fields Dialog opens when a developer selects the item in the Application builder and clicks the Edit Form
button.

It has two tabs Layout and Form.

Layout tab

On the Layout tab, you can specify the fields that the user can edit, their order, create tabs and bands for grouping
field inputs.

The Layout tab has two lists of fields. The left list contains the fields that were selected for editing. In the right list
there are available fields that you can select.

To select a field, select it in the right list and use the Left arrow button in the center or press Space key on a keyboard.

To unselect a field, select it in the left list and use the Right arrow button in the center or press Space key on a
keyboard.

To order the selected fields use the buttons that located below left list.

On the right side of the “Layout” tab are the controls that you can use to specify the display options for the fields
selected for editing on the form.

• Columns - the number of columns that will be created for field inputs

• Label size - select a value that determines the size of the labels displayed to the right of the field input:

– xSmall

– Small

– Medium

6.9. Items 189

Jam.py documentation Documentation

– Large

– xLarge

• In panel - if set, the div containing the inputs will have an inset effect

You can create tabs and bands and customize fields that you can edit on each tab or band.

On the right side of the tab there are three buttons for adding, editing or deleting tabs of the edit form.

On the left side of the tab there are two buttons for adding and deleting of bands.

Each tab can have several bands.

After creating tabs and bands, you can use field lists and controls on the right to customize the fields that will be edited
on each tab and band.

Form tab

On this tab are the controls that you can use to specify the options of the edit form

• Form border - if set, the border will be displayed around the form

• Form header - if set, the form header will be created and displayed containing form title and various buttons

• History - if set and saving change history is enabled, the history button will be displayed in the form header

• Close button - if set, the close button will be created in the upper-right corner of the form

• Close on escape - - if set, pressing on the Escape key will close the form

• Width - an integer, the width of the modal form, if not set the value is 600 px

• Edit details - click the button to the right of the input field to select details, that will be available for editing in
the edit form

• Detail height - an integer, the height of the details desplayed in the edit form, if not set, the height of the detail
table is 262px

• Buttons on top - if this check box is checked the buttons are displayed on the top of the view form, when form
has a default form template

190 Chapter 6. Business application builder

Jam.py documentation Documentation

• Modeless form - if this check box is checked the form will be modeless, otherwise - modal.

Click the OK button to save to result or Cancel to cancel the operation.

After saving, you can see the changes by refreshing the project page.

6.9.4 View Form Dialog

The View Form Dialog opens when a developer selects the item in the Application builder and clicks the View Form
button.

It has two tabs Layout and Form.

Layout tab

On the Layout tab, you can specify how the table is displayed in the view form of the item.

Setting table fields

The Layout tab has two lists of fields. The left list contains the fields that were selected be displayed in the table. In
the right list there are available fields that you can select.

To select a field, select it in the right list and use the Left arrow button in the center or press Space key on a keyboard.

To unselect a field, select it in the left list and use the Right arrow button in the center or press Space key on a
keyboard.

To order the selected fields use the buttons that located below left list.

6.9. Items 191

Jam.py documentation Documentation

You can specify the width of the selected columns. To do this, select the field and enter its width in the Width column.
The value can be specified in any supported CSS unit, for example, in pixels - px, in percentage, relative to the parent
element - %. The width specified as an integer value is interpreted as the width specified in pixels.

Examples of column width values:

• 100px

• 100

• 50%

• 2cm

Setting table options

On the right side of the “Layout” tab are the controls that you can use to specify the options of the table displayed in
the view form:

• Multiple selection - if set, a leftmost column with check-boxes will be created to select records. So, that when
a user clicks on the check-box, the value of the primary key field of the record will be added to or deleted from
the selections attribute.

• Dblclick edit - if set, the edit form will be displayed when the user double-clicks on the table row.

• Number of rows - an integer number, if set, specifies the number of rows displayed by the table, otherwise, if
Hight is not specified, the application calculates the height of the table, based on the page height

• Height - an integer number, if set, specifies the height of the table in pixels, otherwise , if Number of rows is
not specified, the application calculates the height of the table, based on the page height

• Row lines - an integer, specifying the number of lines of text displayed in a table row, if it is 0, the height of the
row is determined by the contents of the row cells

• Selected row lines - an integer value, if Row lines is set and this value is greater that 0, it specifies the minimal
number of lines of text displayed in the selected row of the table

• Freeze columns - an integer, if it is greater than 0, it specifies number of first columns that become frozen - they
will not scroll when the table is scrolled horizontally.

• Sort fields - click the button to the right of the input field to open the list of fields and select the fields by which
you can sort the contents of the table by clicking in the corresponding column header of the table.

• Summary fields - click the button to the right of the input field to open the list of fields and the fields for which
the summary will be calculated and displayed in the corresponding column footer. For for numeric fields sums
will be calculated, for not numeric fields - the number of records.

You can get or change these values programmatically on the client by using the table_options attribute of the item

192 Chapter 6. Business application builder

Jam.py documentation Documentation

Form tab

On this tab are the controls that you can use to specify the options of the view form

• Form border - if set, the border will be displayed around the form

• Form header - if set, the form header will be created and displayed containing form title and various buttons

• History - if set and saving change history is enabled, the history button will be displayed in the form header

• Refresh button - if set, the refresh button will be created in the form header, that will allow users to refresh the
page

• Search - if set, the search input will be created in the form header

• Defaul search field - click the button to the right of the input field to select a default search field

• Filters - if set and there are visible filters, the filter button will be created in the form header

• Close button - if set, the close button will be created in the upper-right corner of the form

• Close on escape - - if set, pressing on the Escape key will close the form

• Width - an integer, the width of the modal form, if not set the value is 600 px

• View details - click the button to the right of the input field to select details, that will be displayed in the view
form

• Detail height - an integer, the height of the details desplayed in the view form, if not set, the height of the detail
table is 232px

• Buttons on top - if this check box is checked the buttons are displayed on the top of the view form, when form
has a default form template

You can get or change these values programmatically on the client by using the view_options attribute of the item

6.9. Items 193

Jam.py documentation Documentation

Click the OK button to save to result or Cancel to cancel the operation. After saving, you can see the changes by
refreshing the project page.

6.9.5 Filters Dialog

Use Filters Dialog to create and modify item filters. See Filters

To add or edit a filter click on the appropriate button on the form. The following form will appear:

194 Chapter 6. Business application builder

Jam.py documentation Documentation

Fill in the following fields:

• Field - the field which will be used to filter records.

• Caption - the filter name that appears to users.

• Name - the name of the filter that will be used in programming code to get access to the filter object. It should
be a valid python identifier.

• Filter type - select filter type.

• Placeholder - use this attribute to specify the placeholder that will be displayed by the field input.

• Help - if any text / html-message is specified, a question mark will be displayed to the right of the input, so
when the user moves the mouse pointer over this mark, a pop-up window appears displaying this message.

Help - if any text / html-message is specified, a question mark will be displayed to the right of the input, so when the
user moves the mouse pointer over this label, a pop-up window appears displaying this message.

• Visible - if this checkbox is not checked, this filter will not be displayed in the item Filters dialog.

Use the up and down arrows to place the filters in the order in which they will be displayed. See create_filter_inputs

6.9.6 Details Dialog

Use this dialog to setup details of an item. See Details.

6.9. Items 195

Jam.py documentation Documentation

The Details Dialog has two panels. The left panel lists details that have been added. The right panel have available
detail items that could be added as details.

To add a detail item as detail, select it in the right panel and use the Left arrow button in the center or press Space
key on a keyboard.

To remove a detail, select it in the left panel and use the Right arrow button in the center or press Space key on a
keyboard.

Click the OK button to save to result or Cancel to cancel the operation.

6.9.7 Order Dialog

The Order Dialog opens when a developer selects the item in the Application builder (see Items) and clicks on the
Order button to specify how records will be ordered by default. See open method

196 Chapter 6. Business application builder

Jam.py documentation Documentation

The Order Dialog has two panels. The left panel lists the fields that have been selected. The right panel have available
fields that could be selected.

To select a field, select it in the right panel and use the Left arrow button in the center or press Space key on a
keyboard.

To unselect a field, select it in the left panel and use the Right arrow button in the center or press Space key on a
keyboard.

To order the selected fields use the buttons that located below left panel.

Click the Desc column to set descending/ascending sorting order for the field.

Click the OK button to save to result or Cancel to cancel the operation.

6.9.8 Indices Dialog

The Indices Dialog lists the indices that were created for the item table in the project database.

6.9. Items 197

Jam.py documentation Documentation

To delete an index click the Delete button. The application will generate the SQL query to drop the index and execute
it on the server.

To create a new index click the New button. The following dialog will appear:

198 Chapter 6. Business application builder

Jam.py documentation Documentation

Specify the fields to create an index on, by using left and right arrow buttons. Check the Descending checkbox if you
want to create a descending index. If necessary, change the name of the index.

Click the OK button to create the index. The application will generate the SQL query to create the index and execute
it on the server.

Click Cancel button to cancel the operation.

6.9.9 Foreign Keys Dialog

If an item has a lookup field, and in the definition of lookup item the soft delete attribute is not set, in order to maintain
the integrity of the data, we can create a foreign key. See Foreign keys topic in FAQ

6.9. Items 199

Jam.py documentation Documentation

To do so click the New button, select the field and click OK.

6.9.10 Reports Dialog

The Reports Dialog opens when a developer selects the item in the Application builder (see Items) and clicks on the
Order button to specify reports that could printed for the item. A new project code has a function that can be used to
print the reports.

200 Chapter 6. Business application builder

Jam.py documentation Documentation

The Reports Dialog has two panels. The left panel lists the reports that have been selected. The right panel have
available reports that could be selected.

To select a report, select it in the right panel and use the Left arrow button in the center or press Space key on a
keyboard.

To unselect a report, select it in the left panel and use the Right arrow button in the center or press Space key on a
keyboard.

To order the selected reports use the buttons that located below left panel.

Click the OK button to save to result or Cancel to cancel the operation.

6.10 Details

To work with a detail of an item, expand a group node that owns the item and select that item in the tree. In the center
of the Application builder all details of this item will be displayed.

The right panel of the page have following buttons:

• Client module - click on this button to open the Code editor to edit client module of a detail, see Working with
modules.

6.10. Details 201

Jam.py documentation Documentation

• Server module - click on this button to open the Code editor to edit server module of a detail, see Working with
modules.

• View Form - use this button to invoke the View Form Dialog to set the fields to be displayed in tables on the
client and their order, by default. See create_table method

• Edit Form - use this button to invoke the Edit Form Dialog to set the fields to be displayed in edit forms on the
client and their order, by default. See create_inputs method.

• Order - use this button to invoke the Order Dialog to specify how records will be ordered by default. See open
method

Use Edit button at the bottom of the page to change item_name or caption of a detail.

6.11 Lookup List Dialog

Lookup list is a list of integer-text pairs that can used as a datasource for lookup fields.

Note: The length of the lookup list should not exceed 10

202 Chapter 6. Business application builder

Jam.py documentation Documentation

Click on the Edit/New buttons to edit/create a lookup list.

6.11. Lookup List Dialog 203

Jam.py documentation Documentation

Then use the Edit/New buttons to edit/add a lookup pairs to the list.

204 Chapter 6. Business application builder

Jam.py documentation Documentation

6.12 Intergation with existing database

You can use Jam.py with existing database, that is supported by the framework.

• Create a new project with existing database.

• If you want to import tables in catalogs or journals groups, delete Common fields:

Select Groups node in the project tree, dbl click corresponding group and delete common fields.

Or create new empty groups.

• Select Project node and click Database button. Set DB manual mode to true.

• Select group you want to import a table to and click Import button.

• In the form that will appear dbl click on the table to import it.

• In the Item Editor Dialog check that all fields have valid types. If field type is displayed in the red, try to select
appropriate type.

You can import a subset of fields in the table.

Before saving, specify the primary key field for the item and generator name, if necessary.

• After saving the imported item, go to the project page and check how it is displayed.

• After importing several tables, you can specify lookup fields (in DB manual mode).

Note: Please, do be very careful when performing this operations.

When DB manual mode is removed any changes to the item will be reflected in the corresponding DB table. If you
delete the item, the table will be dropped from the database.

Note: The database table to be imported must have a primary key with one field.

Note: Binary fields must not be imported.

Note: This is a new feature, so if you have some comments, suggestions or found some bugs please send a message.

6.13 Saving audit trail/change history made by users

To save change history made by users to must specify the item that will store them.

To do so, open project parameters and click the button to the right of the History item input:

6.12. Intergation with existing database 205

Jam.py documentation Documentation

In the dialog that will appear click on the Create history item button

206 Chapter 6. Business application builder

Jam.py documentation Documentation

The following mesage will appear when the item will be created:

6.13. Saving audit trail/change history made by users 207

Jam.py documentation Documentation

After that you have to set Keep history attribute of an item to save the history its changes:

To see the history of changes of a record click the icon to the left of the close button on the right part of the header of

208 Chapter 6. Business application builder

Jam.py documentation Documentation

the edit form.

Or you can do it using the show_history method

Note: Changes are saved when dataset changes are applied to the database using apply method (client/server).
Changes to database made with custom SQL requests are not saved in the history.

Note: These changes can significantly increase the size of the database. Please be careful.

6.14 Record locking

In Jam.py, application you can implement a record locking while users concurrently edit a record.

Jam.py uses optimistic locking model, also referred to as optimistic concurrency control.

When an application executes the edit_record method, it receives the current version of the record from the server and
saves it. When the user starts saving the record, the server application checks the current version of the record. If it
differs from the stored value (another user changed it while the record were being edited), the application warns the
user and prohibits saving.

This record locking mechanism is very easy to implement.

6.14. Record locking 209

Jam.py documentation Documentation

To do so you need to create an item that will store record version.

Open project parameters and click the button to the right of the Lock item input:

In the dialog that will appear click on the Create lock item button:

210 Chapter 6. Business application builder

Jam.py documentation Documentation

After that you must set Edit lock attribute in the Item Editor Dialog:

6.14. Record locking 211

Jam.py documentation Documentation

6.15 Language support

Use Language Dialog to add, select and change your language.

212 Chapter 6. Business application builder

Jam.py documentation Documentation

6.15.1 Language locale

Use language locale to set up how the field value will be displayed. See display_text

6.15. Language support 213

Jam.py documentation Documentation

6.15.2 Language translation

See Language translation

214 Chapter 6. Business application builder

Jam.py documentation Documentation

6.16 Language translation

All language translations are stored in the langs.sqlite database in the “jam” folder in the package.

Note: Therefore, if you made some changes to the translation database and installed a new version of the package,
you will use the translation database of this package where there will be no changes made by you.

Please, export you translation to a file!!!

If you want your language translation to be included to Jam.py package, export it to a file and send it me, Andrew
Yushev.

Please note that Jam.py is constantly evolving and by submitting your translation you agree to make the necessary
changes in the future. If you don’t mind you will be included to the contributors list.

Note: Do not change the following symbols %, %(item)s, %(field)s, %(filters)s

For example

english:

Can’t delete the field %(field)s. It’s used in field definitions:%(fields)s

6.16. Language translation 215

Jam.py documentation Documentation

russian translation:

%(field)s. :%(fields)s

216 Chapter 6. Business application builder

CHAPTER 7

Jam.py class reference

Server side is implemented in Python and uses Werkzeug library, the client side in JavaScript and uses JQuery and
Bootstrap

7.1 Client side (javascript) class reference

All objects of the framework represent a task tree. Bellow is classes for each kind of task tree objects:

7.1.1 AbstractItem class

class AbstractItem()

domain: client

language: javascript

AbstractItem class is the ancestor for all item objects of the task tree

Below the attributes and methods of the class are listed.

Attrubutes

ID

ID

domain: client

language: javascript

class AbstractItem

217

Jam.py documentation Documentation

Description

The ID attribute is the unique in the framework id of the item

The ID attribute is most useful when referring to the item by number rather than name. It is also used internally.

item_caption

item_caption

domain: client

language: javascript

class AbstractItem

Description

Item_caption attribute specifies the name of the item that appears to users

item_name

item_name

domain: client

language: javascript

class AbstractItem

Description

Specifies the name of the item as referenced in code. Use item_name to refer to the item in code.

item_type

item_type

domain: client

language: javascript

class AbstractItem

Description

Specifies the type of the item.

Use the type attribute to get the type of the item. It can have one of the following values:

• “task”,

• “items”,

• “details”,

218 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

• “reports”,

• “item”,

• “detail_item”,

• “report”,

• “detail”

items

items

domain: client

language: javascript

class AbstractItem

Description

Lists all items owned by the item.

Use items to access any of the item owned by this object.

owner

Indicates the item that owns this item.

owner

domain: client

language: javascript

class AbstractItem

Description

Use owner to find the owner of an item.

task

Indicates the root of the task tree that owns this item.

task

domain: client

language: javascript

class AbstractItem

7.1. Client side (javascript) class reference 219

Jam.py documentation Documentation

Description

Use task attribute to find the root of the task tree of which the item is a member.

Mehods

abort

abort(message)

domain: client

language: javascript

class AbstractItem

Description

Use abort method to throw exception.

It can be usefull when you need to abort execution of some ‘on_before’ events.

Example

The following code will throw exception with the text:

execution aborted: invoice_table - a quantity value is required

function on_before_post(item) {
if (item.quantity.value === 0) {

item.abort('a quantity value is required');
}

}

alert

alert(mess, options)

domain: client

language: javascript

class AbstractItem

Description

Use the alert method to create a pop-up message in the upper-right corner application that disappears after the first
click on the page.

The mess parameter specifies the text that will be displayed.

The options parameter is an object with the following attributes:

220 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

• type - indicates the type of the message - its font, background color and header text, if it is not specified in the
header parameters. This must be one of the following:

– ‘info’,

– ‘error’,

– ‘success’

default value is ‘info’

• header - specifies the header of the alert

• pulsate - if true, the header will pulsate, the default value is true

• show_header - if false, the header will not be displayed.

The methods alert_error and alert_success are the same as alert with the corresponding type options.

Example

item.alert_error('Failed to send the mail: ' + err);
item.alert('Successfully sent the mail');

can_view

can_view()

domain: client

language: javascript

class AbstractItem

Description

Use can_view method to determine if a user have a right to get access to an item dataset or to see report generated by
report when the project Safe mode parameter is set. If the project Safe mode parameter is not set the method always
returns true.

The user privileges are set in the roles node of the project tree.

Example

if (item.visible && item.can_view()) {
$("#submenu")

.append($('')

.append(
$('')

.text(item.item_caption)

.data('item', item);
)

);
}

7.1. Client side (javascript) class reference 221

Jam.py documentation Documentation

each_item

each_item(function(item))

domain: client

language: javascript

class AbstractItem

Description

Use each_item method to iterate over items owned by this object.

The each_item() method specifies a function to run for each child item (child item is passed as a parameter).

You can break the each_item loop at a particular iteration by making the callback function return false.

Example

The following code will output all catalogs of the project in a browser console:

function on_page_loaded(task) {
task.catalogs.each_item(function(item) {

console.log(item.item_name);
})

}

hide_message

hide_message(form)

domain: client

language: javascript

class AbstractItem

Description

Use hide_message method to close a modal form created by message method

The form parameter is a JQuery object returned by message method.

item_by_ID

item_by_ID(ID)

domain: client

language: javascript

class AbstractItem

222 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

item_by_ID searches among all items of the project task tree, starting with the current item, for an item whose ID
attribute is equal to the ID parameter.

load_module

load_module(callback)

domain: client

language: javascript

class AbstractItem

Description

Use load_module method to dynamically load javascript file of an item module, before executing callback.

The method checks whether the module has been loaded, if not, loads the module from the server, initializes the item
and then executes the callback function, otherwise just the callback function is executed. The item is passed to the
callback function as a parameter.

The request to the sever is executed asyncroniously.

Example

Bellow, the do_some_work function is executed only when an item module has been loaded:

function some_work(item) {
item.load_module(do_some_work);

}

function do_some_work(item) {
// some code

}

See also

Working with modules

load_modules

load_script

load_modules

load_modules(module_array, callback)

domain: client

language: javascript

class AbstractItem

7.1. Client side (javascript) class reference 223

Jam.py documentation Documentation

Description

Use load_modules method to dynamically load specified modules before executing the callback.

The method works the same way as load_module, only loads and initializes all modules of items specified in the
module_array.

Example

Bellow, the do_some_work function is executed only when modules of the item and its owner has been loaded:

function some_work(item) {
item.load_modules([item, item.owner], do_some_work);

}

function do_some_work(item) {
// some code

}

See also

Working with modules

load_module

load_script

load_script

load_script(js_filename, callback, onload)

domain: client

language: javascript

class AbstractItem

Description

Use load_script method to load javascript file from the server, before executing callback.

The method checks whether the file has been loaded, if not, loads it from the server, executes (if specified) onload
function and then executes the callback, otherwise just the callback function is executed. The item is passed to the
callback function as a parameter.

The js_filename should specify the path to javascript file relative to the server directory.

The request to the sever is executed asyncroniously.

Example

Bellow, the do_some_work function is executed only when lib.js file from server js directory has been loaded.

loaded:

224 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

function some_work(item) {
item.load_script('js/lib.js', do_some_work);

}

function do_some_work(item) {
// some code

}

See also

Working with modules

load_module

load_modules

message

message(mess, options)

domain: client

language: javascript

class AbstractItem

Description

Use message method to create a modal form.

The mess parameter specifies the text or html content that will appear in the body of the form.

The options parameter is an object with the following attrubutes:

• title - the title of the form,

• width - the width of the form, the default width is 400px

• height - the height of the form,

• margin - use the margin attribute to define margins of the form body

• text_center - if true, the body tags will be centered, the default value is false,

• buttons - an object that define buttons that will be created in the footer of the form, keys of the object are button
names, values - functions, that will be executed when button clicked,

• button_min_width - the min width of the buttons, the default value is 100px,

• center_buttons - if true, the buttons will be centered, the default value is false,

• close_button - if this value is true, an application will create a close button in the upper-right corner of the form,
the default value is true,

• close_on_escape - if true, the form will be closed, when user press Escape, the default value is true,

• print - if this value is true, an application will create a print button in the upper-right corner of the form to print
the body of the form, the default value is false

7.1. Client side (javascript) class reference 225

Jam.py documentation Documentation

The method returns a jquery object of the form. To programmatically close the form pass this object to hide_message
method.

Examples

The following code will create a yes-no-cancel dialog:

function yes_no_cancel(item, mess, yesCallback, noCallback, cancelCallback) {
var buttons = {

Yes: yesCallback,
No: noCallback,
Cancel: cancelCallback

};
item.message(mess, {buttons: buttons, margin: "20px",

text_center: true, width: 500, center_buttons: true});
}

task.message(
'<h3>Jam.py</h3>' +
'<h3>Demo application</h3>' +
' with Chinook

→˓Database' +
'<p>by Andrew Yushev</p>' +
'<p>2015</p>',
{title: 'Jam.py framework', margin: 0, text_center: true, buttons: {"OK":

→˓undefined},
center_buttons: true}

);

the result of the code above will be:

226 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

question

Creates a modal form with OK, Cancel buttons

question(mess, yes_callback, no_callback, options)

domain: client

language: javascript

class AbstractItem

Description

Use question to create a modal form with Ok and Cancel buttons.

The mess parameter specifies the text or html content that will appear in the body of the form.

If yes_callback, no_callback functions are specified they will be executed when user clicks on the Ok or Cancel
button, respectively, and then the form will be closed.

Example

The following code creates a modal form, and delete selected record record when the user clicks the OK button:

item.question('Delete record?',
function() {

item.delete();
}

);

server

server(func_name, params, callback)

domain: client

language: javascript

class AbstractItem

Description

Use sever method to execute a function defined in the server module of an item.

Sever method executes a function with a name func_name defined in the server module of an item with parameters
specified in params.

If callback is specified, the function on the server is executed asynchronously, after which the callback is executed
with parameter that is the result of the server function execution, otherwise the function is executed synchronously and
returns the result of the server function.

If exception was raised during the operation on the server and the callback parameter is not passed (synchronous
execution), the client throws an exception. If the callback parameter is present, it is passed to the callback as parameter.

7.1. Client side (javascript) class reference 227

Jam.py documentation Documentation

When exception is raised during the server function execution, the application on the client throws exception with the
server exception text.

The first parameter of the function on the server must be item, it must be followed by the parameters specified in the
function on the client.

params is a list of parameters. If there are not parameters, the params can be omitted.

Example

The function defined in the Invoices journal server module:

def get_total(item, id_value):
result = 0;
copy = item.copy()
copy.set_where(id=id_value)
copy.open()
if copy.record_count():

result = copy.total.value
else:

raise Exception, 'Journal "invoices" does not have a record with id %s' % id_
→˓value

return result;

the following code in the Invoices journal client module will execute this server function:

task.invoices.server('get_total', [17], function(total, err) {
if (err) {

throw err;
}
else {

console.log(total);
}

});

warning

warning(mess, callback)

domain: client

language: javascript

class AbstractItem

Description

Use warning to create a modal form with the Ok button.

The mess parameter specifies the text or html content that will appear in the body of the form.

If callback function are specified it will be executed when user clicks the button and then the form will be closed.

228 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Example

item.warning('No record selected.');

yes_no_cancel

yes_no_cancel(mess, yes_callback, no_callback, cancel_callback)

domain: client

language: javascript

class AbstractItem

Description

Use yes_no_cancel to create a modal form with Yes No, Cancel buttons.

The mess parameter specifies the text or html content that will appear in the body of the form.

If yes_callback, no_callback, cancel_callback functions are specified they will be executed when user clicks on the
Yes, No or Cancel button, respectively, and then the form will be closed.

Example

The following code is executed when user clicks on the close button in the upper right corner of an item edit form.

function on_edit_form_close_query(item) {
var result = true;
if (item.is_changing()) {

if (item.is_modified()) {
item.yes_no_cancel('Data has been modified. Save changes?',

function() {
item.apply_record();

},
function() {

item.cancel_edit();
}

);
result = false;

}
else {

item.cancel();
}

}
return result;

}

7.1.2 Task class

class Task()

7.1. Client side (javascript) class reference 229

Jam.py documentation Documentation

domain: client

language: javascript

Task class is used to create the root of the Task tree of the project.

Below the attributes, methods and events of the class are listed.

It, as well, inherits attributes and methods of its ancestor class AbstractItem class

Attrubutes

forms_container

forms_container

domain: client

language: javascript

class Task

Description

The forms_container is a JQuery object in which the application will create forms.

To initialize forms_container use the set_forms_container method or the create_menu method.

The default code uses the create_menu method.

See also

forms_in_tabs

create_menu

set_forms_container

forms_in_tabs

forms_in_tabs

domain: client

language: javascript

class Task

Description

If the forms_in_tabs attribute is set and forms_container is specified the application will create forms in tabs.

This attribute can be set in the Interface tab of Parameters.

230 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

safe_mode

safe_mode

domain: client

language: javascript

class Task

Description

Check the safe_mode attribute to determine if the safe mode parameter of the project is set.

Example

function on_page_loaded(task) {

$("#title").html(task.item_caption);
if (task.safe_mode) {

$("#user-info").text(task.user_info.role_name + ' ' + task.user_info.user_
→˓name);

$('#log-out')
.show()
.click(function(e) {

e.preventDefault();
task.logout();

});
}

task.tasks.view($("#content"));
}

See also

Parameters

user_info

on_page_loaded

templates

templates

domain: client

language: javascript

class Task

Description

The templates attribute stores the form templates of the project.

7.1. Client side (javascript) class reference 231

Jam.py documentation Documentation

See also

Form templates

Forms

user_info

user_info

domain: client

language: javascript

class Task

Description

Use user_info attribute to get user information when project Safe mode parameter is set.

user_info is an object that has the following attributes:

• user_id - the user id

• user_name - the user name

• role_id - user role id

• role_name - the role assigned to the user

• admin - if true the user can work in the Application builder

If safe mode is false the user_info attribute is an empty object.

Example

function on_page_loaded(task) {
$("#title").html('Jam.py demo application');
if (task.safe_mode) {

$("#user-info").text(task.user_info.role_name + ' ' + task.user_info.user_
→˓name);

$('#log-out')
.show()
.click(function(e) {

e.preventDefault();
task.logout();

});
}
// some initalization code

}

See also

load

login

232 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

logout

Users

Roles

Mehods

add_tab

add_tab(container, tab_name, options)

domain: client

language: javascript

class Task

Description

The add_tab method creates a tab for a container.

The container is JQuery object for a container element.

The tab_name is the name of the tab.

Use can use the options to specify optional parameters. It is the object that can have the following attributes:

• tab_id - a unique string identifing the tab

• show_close_btn - if it is set to true the close tab button will appear that can be used to close the tab

• set_active - if it is set to true the new tab will became active

• on_close - a callback function that will be called when the close tab button is clicked

The function returns the JQuery object of the div with tab-pane class that will be displayed when tab became active.

Example

The following code will create tabs for editing Customers catalog. It uses create_inputs method:

function on_edit_form_created(item) {
var container = item.edit_form.find('.tabs');
task.init_tabs(container);
item.create_inputs(task.add_tab(container, 'Customer'),

{fields: ['firstname', 'lastname', 'company', 'support_rep_id']}
);
item.create_inputs(task.add_tab(container, 'Address'),

{fields: ['country', 'state', 'address', 'postalcode']}
);
item.create_inputs(task.add_tab(container, 'Contact'),

{fields: ['phone', 'fax', 'email']}
);

}

Below is the edit html template for Customers catalog:

7.1. Client side (javascript) class reference 233

Jam.py documentation Documentation

<div class="customers-edit">
<div class="form-body">

<div class="tabs">
</div>

</div>
<div class="form-footer">

<button type="button" id="ok-btn" class="btn btn-ary expanded-btn">
<i class="icon-ok"></i> OK<small class="muted"> [Ctrl+Enter]</small>

</button>
<button type="button" id="cancel-btn" class="btn expanded-btn">

<i class="icon-remove"></i> Cancel
</button>

</div>
</div>

See also

init_tabs

close_tab

close_tab

close_tab(container, tab_id)

domain: client

language: javascript

class Task

Description

Use the close_tab method to close tab in the container identified by tab_id.

See also

init_tabs

add_tab

create_menu

create_menu: function(menu, forms_container, options)

domain: client

language: javascript

class Task

234 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

The create_menu method created a menu based on the project task tree.

If display forms in tabs attribute of the project parameters is set, initializes tabs that will be created to display forms.

It iterates through the items of the task tree and adds items to the menu for which the visible attribute is set to true, and
the user has the right to view them.

The method uses to assign on click event to the menu items so that for reports the print method will be executed when
a user clicks it and the view method will be executed for other items.

The following parameters could be passed to the method:

• menu - a JQuery object of the menu element from index.html file

• forms_container a JQuery object of the element that will contain the forms created by the view method

• options - an object that can have the following attributes:

– custom_menu - use this option to create a custom menu, see below for details

– view_first - if it is true the view form of the first item in the menu will be displayed after menu is
created, the default value is false

– create_single_group - if it is true and only one group in the task tree has items the menu item for
the group will be created that have a drop down menu for group items, otherwise the menuitems for each
item will be created, the default value is false

– splash_screen - an html that will be displayed in the forms_container when all tabs are closed

Custom menu option

To create your own custom menu you must set a custom_menu option.

This option is a list of menu objects, each object can be:

• Jam.py item or item group

• array: the first element of the array is the name of the menu item, and the second is the list of menu objects

• object with one attribute: the key of the attribute is the name of menu item and the value - a list of menu objects

• object with one attribute: the key of the attribute is the name of menu item and the value - function to be executed
when the menu item is clicked

To add a separator, an empty string (‘’) can be added to the list of menu objects

Example

task.create_menu($("#menu"), $("#content"), {
splash_screen: '<h1 class="text-center">Jam.py Demo Application</h1>',
view_first: true

});

An example with custom menu:

7.1. Client side (javascript) class reference 235

Jam.py documentation Documentation

let menu = [
['First', [task.invoices, task.customers]],
{'Second': [task.catalogs, '', task.reports]},
{Third: [task.tracks, {Params: function() {alert('params clicked')}}]},
{Fourth: [task.task.analytics, {'Artists list': [task.artists]}]},
task.reports,
{Params: function() {alert('params clicked')}},

];
task.create_menu($("#menu"), $("#content"), {

custom_menu: menu,
splash_screen: '<h1 class="text-center">Jam.py Demo Application</h1>',
view_first: true

});

init_tabs

init_tabs(container, tabs_position)

domain: client

language: javascript

class Task

Description

The init_tabs method initializes tabs for a container.

The container is JQuery object for a container element.

The tabs_position parameter specifies where tabs, created by the add_tab method will be positioned. It is string
that can be one of the following values:

• tabs-below

• tabs-left

• tabs-right

If this parameter is omitted tabs will be positioned at the top of the container.

After this method is called you can use the add_tab method to create tabs.

See also

add_tab

close_tab

load

load(callback)

domain: client

language: javascript

236 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

class Task

Description

Load method loads the project task tree from the server and initilizes it.

When a Web browser loads the jam.js library in index.html file, jam.js creates an empty task object. The load
method loads the project task tree from the server and initilizes it (see workflow). After that the application triggers
on_page_loaded event.

Example

The following code is from the project index.html file.

<script src="/jam/js/jam.js"></script>
<script src="/js/events.js"></script>

<script>
$(document).ready(function(){

task.load();
});

</script>

See also

login

logout

user_info

Users

Roles

login

login(callback)

domain: client

language: javascript

class Task

Description

The login method creates a login form using the login form div defined in the templates of the index.html file. It is
called by the load method when the project Safe mode parameter

7.1. Client side (javascript) class reference 237

Jam.py documentation Documentation

See also

load

logout

user_info

Users

Roles

logout

logout()

domain: client

language: javascript

class Task

Description

Call logout to logout a user.

Example

function on_page_loaded(task) {
$("#title").html('Jam.py demo application');
if (task.safe_mode) {

$("#user-info").text(task.user_info.role_name + ' ' + task.user_info.user_
→˓name);

$('#log-out')
.show()
.click(function(e) {

e.preventDefault();
task.logout();

});
}
// some initalization code

}

See also

load

login

user_info

Users

Roles

238 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

set_forms_container

set_forms_container(container, options)

domain: client

language: javascript

class Task

Description

The set_forms_container can be used to initialize the forms_container attribute that will contain forms of the
application.

If the forms_in_tabs attribute is set the applications also initializes the tabs that will be used to display forms.

The container is JQuery object that will be used as a container for the application forms.

The options parameter can have the following attribute:

• splash_screen - an html that will be displayed in the forms_container when all tabs are closed

Example

task.set_forms_container($("#content"), {
splash_screen: '<h1 class="text-center">Jam.py Demo Application</h1>'

});

See also

forms_container

forms_in_tabs

create_menu

upload

upload(options)

domain: client

language: javascript

class Task

Description

Use the upload method to select a file in the File open dialog box and upload it to the static/files directory in the
server folder.

When saving the file on the server, the file name is changed by the Werkzeug secure_filename function and then the
current date is added to it. See http://werkzeug.pocoo.org/docs/0.14/utils/

7.1. Client side (javascript) class reference 239

http://werkzeug.pocoo.org/docs/0.14/utils/

Jam.py documentation Documentation

The options parameter is an object that may have the following attributes:

• callback - is a callback function that is executed when the file is downloaded. It is passed, as parameters, the
name of the file stored on the server, the name of the downloaded file and the path to the folder where the file
was saved.

• show_progress - if true and the uploaded file is large, the progress bar will be displayed. the defaul value is
true

• accept - the attribute specifies the types of files that can be submitted through a file upload, see Accept string

Note: Please note that the accept attribute specifies only types of files that can be picked up by the user in the
browser.

The server checks all uploaded files for compliance with the Upload file extensions attribute of the Project parameters.

Events

on_edit_form_close_query

on_edit_form_created(item)

domain: client

language: javascript

class Task class

Description

The on_edit_form_close_query event is triggered by the close_edit_form method of the item.

The item parameter is the item that triggered the event.

See also

Forms

close_edit_form

on_edit_form_created

on_edit_form_created(item)

domain: client

language: javascript

class Task class

240 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

The on_edit_form_created event is triggered by the create_edit_form method of the item when the form has
been created but not shown yet.

The item parameter is the item that triggered the event.

This event, if defined, is triggered for every item of the task, whose create_edit_form method has been called.

See also

Forms

create_edit_form

on_edit_form_keydown

on_edit_form_keydown(item, event)

domain: client

language: javascript

class Task class

Description

The on_edit_form_keydown event is triggered when the keydown event occurs for the edit_form of the item.

The item parameter is the item that triggered the event.

The event is JQuery event object.

See also

Forms

create_edit_form

on_edit_form_keyup

on_edit_form_keyup(item, event)

domain: client

language: javascript

class Task class

7.1. Client side (javascript) class reference 241

Jam.py documentation Documentation

Description

The on_edit_form_keyup event is triggered when the keyup event occurs for the edit_form of the item.

The item parameter is the item that triggered the event.

The event is JQuery event object.

See also

Forms

create_edit_form

on_edit_form_shown

on_edit_form_shown(item)

domain: client

language: javascript

class Task class

Description

The on_edit_form_shown event is triggered by the create_edit_form method of the item when the form has been
shown.

The item parameter is the item that triggered the event.

This event, if defined, is triggered for every item of the task, whose create_edit_form method has been called.

See also

Forms

create_edit_form

on_filter_form_close_query

on_filter_form_close_query(item)

domain: client

language: javascript

class Task class

Description

The on_filter_form_close_query event is triggered by the close_filter_form method of the item.

The item parameter is the item that triggered the event.

242 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Forms

create_filter_form

close_filter_form

on_filter_form_created

on_filter_form_created(item)

domain: client

language: javascript

class Task class

Description

The on_filter_form_created event is triggered by the create_filter_form method of the item when the form
has been created but not shown yet.

The item parameter is the item that triggered the event.

This event, if defined, is triggered for every item of the task, whose create_filter_form method has been called.

See also

Forms

create_filter_form

on_filter_form_shown

on_filter_form_shown(item)

domain: client

language: javascript

class Task class

Description

The on_filter_form_shown event is triggered by the create_filter_form method of the item when the form has
been shown.

The item parameter is the item that triggered the event.

This event, if defined, is triggered for every item of the task, whose create_filter_form method has been called.

7.1. Client side (javascript) class reference 243

Jam.py documentation Documentation

See also

Forms

create_filter_form

on_page_loaded

on_page_loaded(task)

domain: client

language: javascript

class Task class

Description

The on_page_loaded event is the first event triggered on the client. See Workflow.

Use it to initialize the client.

The task parameter is the root of the client task tree.

See also

Workflow

Task tree

on_param_form_close_query

on_param_form_close_query(item)

domain: client

language: javascript

class Task class

Description

The on_param_form_close_query event is triggered by the close_param_form method.

The report parameter is the report that triggered the event.

See also

Forms

Client-side report programming

close_param_form

244 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

on_param_form_created

on_param_form_created(item)

domain: client

language: javascript

class Task class

Description

The on_param_form_created event is triggered by the create_param_form method, that, usually, is called by
then print method.

The report parameter is the report that triggered the event.

See also

Forms

Client-side report programming

print

create_param_form

on_param_form_shown

on_param_form_shown(item)

domain: client

language: javascript

class Task class

Description

The on_param_form_shown event is triggered by the create_param_form method, that, usually, is called by then
print method.

The report parameter is the report that triggered the event.

See also

Forms

Client-side report programming

print

create_param_form

7.1. Client side (javascript) class reference 245

Jam.py documentation Documentation

on_view_form_close_query

on_view_form_close_query(item)

domain: client

language: javascript

class Task class

Description

The on_view_form_close_query event is triggered by the close_view_form method of the item.

The item parameter is the item that triggered the event.

See also

Forms

close_view_form

on_view_form_created

on_view_form_created(item)

domain: client

language: javascript

class Task class

Description

The on_view_form_created event is triggered by the view method of the item when the form has been created
but not shown yet.

The item parameter is the item that triggered the event.

This event, if defined, is triggered for every item of the task, whose view method has been called.

See also

Forms

view

on_view_form_keydown

on_view_form_keydown(item, event)

domain: client

language: javascript

246 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

class Task class

Description

The on_view_form_keydown event is triggered when the keydown event occurs for the view_form of the item.

The item parameter is the item that triggered the event.

The event is JQuery event object.

See also

Forms

view

on_view_form_keyup

on_view_form_keyup(item, event)

domain: client

language: javascript

class Task class

Description

The on_view_form_keyup event is triggered when the keyup event occurs for the view_form of the item.

The item parameter is the item that triggered the event.

The event is JQuery event object.

See also

Forms

view

on_view_form_shown

on_view_form_shown(item)

domain: client

language: javascript

class Task class

7.1. Client side (javascript) class reference 247

Jam.py documentation Documentation

Description

The on_view_form_shown event is triggered by the view method of the item when the form has been shown.

The item parameter is the item that triggered the event.

This event, if defined, is triggered for every item of the task, whose view method has been called.

See also

Forms

view

7.1.3 Group class

class Group()

domain: client

language: javascript

Group class is used to create group objects of the task tree

Below the events of the class are listed.

It, as well, inherits attributes and methods of its ancestor class AbstractItem class

Events

on_edit_form_close_query

on_edit_form_close_query(item)

domain: client

language: javascript

class Group class

Description

The on_edit_form_close_query event is triggered by the close_edit_form method of the item.

The item parameter is the item that triggered the event.

See also

Forms

close_edit_form

248 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

on_edit_form_created

on_edit_form_created(item)

domain: client

language: javascript

class Group class

Description

The on_edit_form_created event is triggered by the create_edit_form method of the item when the form has
been created but not shown yet.

The item parameter is the item that triggered the event.

This event, if defined, is triggered for every item of the group, whose create_edit_form method has been called.

See also

Forms

create_edit_form

on_edit_form_keydown

on_edit_form_keydown(item, event)

domain: client

language: javascript

class Group class

Description

The on_edit_form_keydown event is triggered when the keydown event occurs for the edit_form of the item.

The item parameter is the item that triggered the event.

The event is JQuery event object.

See also

Forms

create_edit_form

7.1. Client side (javascript) class reference 249

Jam.py documentation Documentation

on_edit_form_keyup

on_edit_form_keyup(item, event)

domain: client

language: javascript

class Group class

Description

The on_edit_form_keyup event is triggered when the keyup event occurs for the edit_form of the item.

The item parameter is the item that triggered the event.

The event is JQuery event object.

See also

Forms

create_edit_form

on_edit_form_shown

on_edit_form_shown(item)

domain: client

language: javascript

class Group class

Description

The on_edit_form_shown event is triggered by the create_edit_form method of the item when the form has been
shown.

The item parameter is the item that triggered the event.

This event, if defined, is triggered for every item of the group, whose create_edit_form method has been called.

See also

Forms

create_edit_form

250 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

on_filter_form_close_query

on_filter_form_close_query(item)

domain: client

language: javascript

class Group class

Description

The on_filter_form_close_query event is triggered by the close_filter_form method of the item.

The item parameter is the item that triggered the event.

See also

Forms

close_filter_form

on_filter_form_created

on_filter_form_created(item)

domain: client

language: javascript

class Group class

Description

The on_filter_form_created event is triggered by the create_filter_form method of the item when the form
has been created but not shown yet.

The item parameter is the item that triggered the event.

This event, if defined, is triggered for every item of the group, whose create_filter_form method has been called.

See also

Forms

create_filter_form

on_filter_form_shown

on_filter_form_shown(item)

domain: client

language: javascript

7.1. Client side (javascript) class reference 251

Jam.py documentation Documentation

class Group class

Description

The on_filter_form_shown event is triggered by the create_filter_form method of the item when the form has
been shown.

The item parameter is the item that triggered the event.

This event, if defined, is triggered for every item of the group, whose create_filter_form method has been called.

See also

Forms

create_filter_form

on_view_form_close_query

on_view_form_close_query(item)

domain: client

language: javascript

class Group class

Description

The on_view_form_close_query event is triggered by the close_view_form method of the item.

The item parameter is the item that triggered the event.

See also

Forms

close_view_form

on_view_form_created

on_view_form_created(item)

domain: client

language: javascript

class Group class

252 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

The on_view_form_created event is triggered by the view method of the item when the form has been created
but not shown yet.

The item parameter is the item that triggered the event.

This event, if defined, is triggered for every item of the group, whose view method has been called.

See also

Forms

view

on_view_form_keydown

on_view_form_keydown(item, event)

domain: client

language: javascript

class Group class

Description

The on_view_form_keydown event is triggered when the keydown event occurs for the view_form of the item.

The item parameter is the item that triggered the event.

The event is JQuery event object.

See also

Forms

view

on_view_form_keyup

on_view_form_keyup(item, event)

domain: client

language: javascript

class Group class

7.1. Client side (javascript) class reference 253

Jam.py documentation Documentation

Description

The on_view_form_keyup event is triggered when the keyup event occurs for the view_form of the item.

The item parameter is the item that triggered the event.

The event is JQuery event object.

See also

Forms

view

on_view_form_shown

on_view_form_shown(item)

domain: client

language: javascript

class Group class

Description

The on_view_form_shown event is triggered by the view method of the item when the form has been shown.

The item parameter is the item that triggered the event.

This event, if defined, is triggered for every item of the group, whose view method has been called.

See also

Forms

view

7.1.4 Item class

class Item()

domain: client

language: javascript

Item class is used to create item objects of the task tree that may have an associated database table.

Below the attributes, methods and events of the class are listed.

It, as well, inherits attributes and methods of its ancestor class AbstractItem class

254 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Attrubutes and properties

active

active

domain: client

language: javascript

class Item class

Description

Specifies whether or not an item dataset is open.

Use active read only property to determine whether an item dataset is open.

The open method changes the value of active to true. The close method sets it to false.

When the dataset is open its records can be navigated and its data can be modified and the changes saved in the item
database table.

See also

Dataset

Navigating datasets

Modifying datasets

can_modify

active

domain: client

language: javascript

class Item class

Description

Set the can_modify property to false if you need to prohibit changing of the item in the visual controls.

When can_modify is true the can_create, can_edit, can_delete methods return false.

By default the can_modify property is true.

details

details

7.1. Client side (javascript) class reference 255

Jam.py documentation Documentation

domain: client

language: javascript

class Item class

Description

Lists all detail objects of the item.

See also

Details

each_detail

edit_form

edit_form

domain: client

language: javascript

class Item class

Description

Use edit_form attribute to get access to a Jquery object representing the edit form of the item.

It is created by the create_edit_form method.

The close_edit_form method sets the edit_form value to undefined.

Example

In the following example the button defined in the item edit html template is assigned a click event:

item.edit_form.find("#ok-btn").on('click.task',
function() {

item.apply_record();
}

);

See also

Forms

create_edit_form

close_edit_form

256 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

edit_options

edit_options

domain: client

language: javascript

class Item class

Description

The edit_options attribute is a set of options that determine how the edit form will be displayed on the browser
page.

These options are set in the Edit Form Dialog in Application Builder.

You can change edit options in the on_edit_form_created event handler of the item. See example.

edit_options is an object that has the following attributes:

Option Description
width the width of the modal form, the default value is 600 px,
title the title of the form, the default value is the value of a item_caption attribute,
form_borderif true, the border will be displayed around the form
form_headerif true, the form header will be created and displayed containing form title and various buttons
his-
tory_button

if true and saving change history is enabled, the history button will be displayed in the form header

close_buttonif true, the close button will be created in the upper-right corner of the form
close_on_escapeif true, pressing on the Escape key will execute the close_edit_form method to close the form
edit_details the list of the detail names, that will be available for editing in the edit form, if edit form template

contains the div with class ‘edit-detail’ (the default edit form template have this div)
de-
tail_height

the height of the detail desplayed in the view form, if not specified the height of the detail table is
200px

fields specify the list of field names that the create_inputs method will use, if fields attribute of its options
parameter is not specified

tem-
plate_class

if specified, the div with this class will be searched in the task templates attribute and used as a form
html template when creating a form. This attribute must be set before creating the form

mode-
less

if set the edit forms will be created modeless, otherwise - modal

Example

function on_edit_form_created(item) {
item.edit_options.width = 800;
item.edit_options.close_on_escape = false;

}

See also

Forms

create_edit_form

7.1. Client side (javascript) class reference 257

Jam.py documentation Documentation

close_edit_form

fields

fields

domain: client

language: javascript

class Item class

Description

Lists all field objects of the item.

Example

function customer_fields(customers) {
customers.open({limit: 1});
for (var i = 0; i < customers.fields.length; i++) {

console.log(customers.fields[i].field_caption, customers.fields[i].display_
→˓text);

}
}

See also

Fields

Field class

each_field

filter_form

filter_form

domain: client

language: javascript

class Item class

Description

Use filter_form attribute to get access to a Jquery object representing the filter form of the item.

It is created by the create_filter_form method.

The close_filter_form method sets the filter_form value to undefined.

258 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Example

In the following example the button defined in the item filter html template is assigned a click event:

item.filter_form.find("#cancel-btn").on('click',
function() {

item.close_filter()
}

);

See also

Forms

create_filter_form

close_filter_form

filter_options

filter_options

domain: client

language: javascript

class Item class

Description

Use the filter_options attribute to specify parameters of the modal filter form.

filter_options is an object that has the following attributes:

• width - the width of the modal form, the default value is 560 px,

• title - use it to get or set the title of the filter form,

• close_button - if true, the close button will be created in the upper-right corner of the form, the default
value is true,

• close_caption - if true and close_button is true, will display ‘Close - [Esc]’ near the button

• close_on_escape - if true, pressing on the Escape key will trigger the close_filter_form method.

• close_focusout - if true, the close_filter_form method will be called when a form loses focus

• template_class - if specified, the div with this class will be searched in the task templates attribute and
used as a form html template when creating a form

Example

function on_filter_form_created(item) {
item.filter_options.width = 700;

}

7.1. Client side (javascript) class reference 259

Jam.py documentation Documentation

See also

Forms

create_filter_form

close_filter_form

Filtered

filtered

domain: client

language: javascript

class Item class

Description

Specifies whether or not filtering is active for a dataset.

Check filtered to determine whether or not local dataset filtering is in effect. If filtered is true, then filtering
is active. To apply filter conditions specified in the on_filter_record event handler, set filtered to true.

See also

on_filter_record

filters

filters

domain: client

language: javascript

class Item class

Description

Lists all filter objects of the item.

Example

function invoices_filters(invoices) {
for (var i = 0; i < invoices.filters.length; i++) {

console.log(invoices.filters[i].filter_caption, invoices.filters[i].value);
}

}

260 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Filters

Filter class

each_filter

item_state

item_state

domain: client

language: javascript

class Item

Description

Examine item_state to determine the current operating mode of the item. Item_state determines what can be done
with data in an item dataset, such as editing existing records or inserting new ones. The item_state constantly
changes as an application processes data.

Opening a item changes state from inactive to browse. An application can call edit to put an item into edit state, or
call insert or append to put an item into insert state.

Posting or canceling edits, insertions, or deletions, changes item_state from its current state to browse. Closing a
dataset changes its state to inactive.

To check item_state value use the following methods:

• is_new - indicates whether the item is in insert state

• is_edited - indicates whether the item is in edit state

• is_changing - indicates whether the item is in edit or insert state

item_state value can be:

• 0 - inactive state,

• 1 - browse state,

• 2 - insert state,

• 3 - edit state,

• 4 - delete state

item task attribute have consts object that defines following attributes:

• “STATE_INACTIVE”: 0,

• “STATE_BROWSE”: 1,

• “STATE_INSERT”: 2,

• “STATE_EDIT”: 3,

• “STATE_DELETE”: 4

so if the item is in edit state can be checked the following way:

7.1. Client side (javascript) class reference 261

Jam.py documentation Documentation

item.item_state === 2

or:

item.item_state === item.task.consts.STATE_INSERT

or:

item.is_new()

See also

Modifying datasets

log_changes

log_changes

domain: client

language: javascript

class Item class

Description

Indicates whether to log data changes.

Use log_changes to control whether or not changes made to the data in an item dataset are recorded. When
log_changes is true (the default), all changes are recorded. They can later be applied to an application server by
calling the apply method. When log_changes is false, data changes are not recorded and cannot be applied to an
application server.

See also

Modifying datasets

apply

lookup_field

lookup_field

domain: client

language: javascript

class Item class

Description

Use lookup_field to check if the item was created to select a value for the lookup field. See Lookup fields

262 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Example

function on_view_form_created(item) {
item.table_options.multiselect = false;
if (!item.lookup_field) {

var print_btn = item.add_view_button('Print', {image: 'icon-print'}),
email_btn = item.add_view_button('Send email', {image: 'icon-pencil'});

email_btn.click(function() { send_email() });
print_btn.click(function() { print(item) });
item.table_options.multiselect = true;

}
}

paginate

paginate

domain: client

language: javascript

class Item class

Description

The paginate attribute determines the behavior of a table created by the create_table method

When paginate is set to true, a paginator is created, and the table calculates the number of the rows displayed,
based on its height. The table will internally manipulate the limit and offset parameters of the open method,
depending on its height and current page, reopening the dataset when page changes.

If paginate value is false, the table will displays all available records of the dataset.

See also

create_table

open

permissions

permissions

domain: client

language: javascript

class Item class

Description

Set the permissions property attributes to prohibit changing of the item in the visual controls.

The permissions property is an object that has the following attributes:

7.1. Client side (javascript) class reference 263

Jam.py documentation Documentation

• can_create

• can_edit

• can_delete

By default theses attributes are set to true.

When these attributes are set to false the corresponding

• can_create,

• can_edit,

• can_delete

methods return false.

See also

How to prohibit changing record

read_only

read_only

domain: client

language: javascript

class Item class

Description

Read the read_only property to determines whether the data can be modified in data-aware controls.

Set read_only property to true to prevent data from being modified in data-aware controls.

When you assign a value to the read_only property, the application sets the read_only property of all the details and
the read_only property of each field to that value.

If the user role prohibits editing of the record, read_only always returns true.

See also

read_only

Example

In this example we first set read_only attribute of the invoices item to true. It makes all fields and invoice_table
detail read only. After that we allow a user to edit customer field and invoice_table detail.

264 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

function on_edit_form_created(item) {
item.read_only = true;
item.customer.read_only = false;
item.invoice_table.read_only = false;

}

rec_count

rec_count

domain: client

language: javascript

class Item class

Description

Read the rec_count property to get the number of records ownered by the item’s dataset.

If the module declares an on_filter_record event handler and the Filtered attribute is set, this property calculates the
number of records that satisfy this filter, otherwise the record_count method is used to calculate the number of records.

See also

record_count

Example

function edit_invoice(invoice_id) {
var invoices = task.invoices.copy();
invoices.open({ where: {id: invoice_id} }, function() {

if (invoices.rec_count) {
invoices.edit_record();

}
else {

invoices.alert_error('Invoices: record not found.');
}

});
}

rec_no

rec_no

domain: client

language: javascript

class Item class

7.1. Client side (javascript) class reference 265

Jam.py documentation Documentation

Description

Examine the rec_no property to determine the record number of the current record in the item dataset. rec_no can
be set to a specific record number to position the cursor on that record.

Example

function calculate(item) {
var subtotal,

tax,
total,
rec;

if (!item.calculating) {
item.calculating = true;
try {

subtotal = 0;
tax = 0;
total = 0;
item.invoice_table.disable_controls();
rec = item.invoice_table.rec_no;
try {

item.invoice_table.each(function(d) {
subtotal += d.amount.value;
tax += d.tax.value;
total += d.total.value;

});
}
finally {

item.invoice_table.rec_no = rec;
item.invoice_table.enable_controls();

}
item.subtotal.value = subtotal;
item.tax.value = tax;
item.total.value = total;

}
finally {

item.calculating = false;
}

}
}

See also

Dataset

Navigating datasets

selections

selections

domain: client

language: javascript

266 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

class Item class

Description

The selections attribute stores a list of a primary key field values.

When a Multiple selection check box is checked on the Layout tab in the View Form Dialog or multiselect attribute
of the table_options is set programmatically, the check box in the leftmost column of the table appears and each time
a user clicks on the check box, the selections attrubute changes.

It can also be changed programmatically by using add or remove methods or assigning an array.

Example

In this example, the send_email function, on the client, uses Customers selection attribute to get array of primary
key field values selected by users and send them to the send_email function defined in the server module of the
item using the server method

function send_email(subject, message) {
var selected = task.customers.selections;
if (!selected.length) {

selected.add(task.customers.id.value);
}

item.server('send_email', [selected, subject, message],
function(result, err) {

if (err) {
item.alert('Failed to send the mail: ' + err);

}
else {

item.alert('Successfully sent the mail');
}

}
);

}

On the server, this array is used to retrieve information about selected customers using open method

import smtplib

def send_email(item, selected, subject, mess):
cust = item.task.customers.copy()
cust.set_where(id__in=selected)
cust.open()
to = []
for c in cust:

to.append(c.email.value)

code that sends email

table_options

table_options

7.1. Client side (javascript) class reference 267

Jam.py documentation Documentation

domain: client

language: javascript

class Item class

Description

The table_options attribute is a set of options that determine how the table of the view form of will be displayed.
Options defined in it are used by the create_table method if its options parameter don’t override corresponding option.

These options are set in the Layout tab of the View Form Dialog in Application Builder.

You can change table_options in the on_view_form_created event handler of the item. See example.

The table_options parameter is an object that may have the following attributes:

268 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Op-
tion

Description

row_countspecifies the number of rows displayed by the table
height if row_count is not specified, it determines the height of the table, the default value is 480. The table at

creation calculates the number of rows displayed (row_count), based on the value of this parameter.
fields a list of field names. If specified, a column will be created for each field whose name is in this list, if not

specified (the default) then the fields attribute of an view_options will be used
ti-
tle_line_count

specifies the number of lines of text displayed in a title row, if it is 0, the height of the row is determined
by the contents of the title cells

row_line_countspecifies the number of lines of text displayed in a table row, if it is 0, the height of the row is determined
by the contents of the cells

ex-
pand_selected_row

if row_line_count is set and expand_selected_row is greater that 0, it specifies the minimal number of
lines of text displayed in the selected row of the table

ti-
tle_word_wrap

specifies if the column title text can be wrapped.

col-
umn_width

the width of the columns are calulated by a Web Browser. You can use this option to force the width of
columns. The option is an object, key values of which are field names, the values are column widths as
CSS units

ed-
itable_fields

the list of field names could be edited in the table.

se-
lected_field

if editable_fields are set, specifies the name of the field whose column will be selected, when the selected
row is changed.

sortable if this option is specified, it is possible to sort the records by clicking on the table column header. When
a sort_fields option is not specified (default), a user can sort records on any field, otherwise, only on the
fields whose names are listed in this option.

sort_fieldsthe list of field names on which the table can be sorted, by clicking on the corresponding table column
header. If an item is a detail the operation is performed on the client, otherwise sorting is performed on
the server (the open method is used internally).

sum-
mary_fields

a list of field names. When it is specified, the table calculates sums for numeric fields and displays them
in the table footer, for not numeric fields it displays the number of records.

freeze_countan integer value. If it is greater than 0, it specifies number of first columns that become frozen - they will
not scroll when the table is scrolled horizontally.

show_hintsif true, the tooltip will be displayed when the user hovers the mouse over a table cell, and the cell text
does not fit in the cell size. The default value is true.

hint_fieldsa list of field names. If it is specified, the tooltip will be displayed only for fields from this list, regardless
of the value of show_hints option value.

on_click specifies the function, that will be executed when a user click on a table row. The item will be passed as
a parameter to the function.

on_dblclickspecifies the function, that will be executed when a user double click on a table row. The item will be
passed as a parameter to the function.

dblclick_editif the value of the option is set to true and the on_dblclick option is not set, the edit form will be shown
when a user double click on a table row.

multi-
select

if this option is set, a leftmost column with check-boxes will be created to select records. So, that when a
user clicks on the check-box, the value of the primary key field of the record will be added to or deleted
from the selections attribute.

se-
lect_all

if true, the menu will appear in the leftmost column of the table header, which will allow the user selects
all records that match the current filters and the search value.

row_callbackthe callback functions called each time fields of the record are changed. Two parameters are passed to
the function - item, whose record has changed and JQuery object of the corresponding row of the table.
Please be carefull - the item passed to the function can be not item itself, but its clone that share the same
dataset.

7.1. Client side (javascript) class reference 269

Jam.py documentation Documentation

Example

function on_view_form_created(item) {
item.table_options.row_line_count = 2;
item.table_options.expand_selected_row = 3;

}

The code in the following two examples does the same:

item.invoice_table.create_table(item.view_form.find('.view-detail'), {
height: 200,
summary_fields: ['date', 'total'],

});

item.invoice_table.table_options.height = 200;
item.invoice_table.table_options.summary_fields = ['date', 'total'];
item.invoice_table.create_table(item.view_form.find('.view-detail'));

See also

View Form Dialog

on_view_form_created

create_table

view_form

view_form

domain: client

language: javascript

class Item class

Description

Use view_form attribute to get access to a Jquery object representing the view form of the item.

It is created by the view method.

The close_view_form method sets the view_form value to undefined.

Example

In the following example the button defined in the item html template is assigned a click event:

item.view_form.find("#new-btn").on('click',
function() {

item.insert_record();
}

);

270 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Forms

view

create_view_form

close_view_form

view_options

view_options

domain: client

language: javascript

class Item class

Description

The view_options attribute is a set of options that determine how the view form of will be displayed on the browser
page.

These options are set in the View Form Dialog in Application Builder.

You can change view options in the on_view_form_created event handler of the item. See example.

view_options is an object that has the following attributes:

Option Description
width the width of the modal form, the default value is 600 px
title the title of the form, the default value is the value of a item_caption attribute,
form_borderif true, the border will be displayed around the form
form_headerif true, the form header will be created and displayed containing form title and various buttons
his-
tory_button

if true and saving change history is enabled, the history button will be displayed in the form header

re-
fresh_button

if true, the refresh button will be created in the form header, that will allow users to refresh the page by
sending request to the server

en-
able_search

if true, the search input will be created in the form header

search_fieldthe name of the field that will be the default search field
en-
able_filters

if true and there are visible filters, the filter button will be created in the form header

close_buttonif true, the close button will be created in the upper-right corner of the form
close_on_escapeif true, pressing on the Escape key will execute the close_view_form method to close the form
view_detailsthe list of detail names, that will be displayed in the view form, if view form template contains the div

with class ‘view-detail’ (the default view form template have this div)
de-
tail_height

the height of the details desplayed in the view form, if not specified the height of the detail table is
200px

mode-
less

if true, the form will be displayed as modeless

tem-
plate_class

if specified, the div with this class will be searched in the task templates attribute and used as a form
html template when creating a form. This attribute must be set before the form is created

7.1. Client side (javascript) class reference 271

Jam.py documentation Documentation

Example

function on_view_form_created(item) {
item.view_options.width = 800;
item.view_options.close_button = false;
item.view_options.close_on_escape = false;

}

See also

Forms

view

virtual_table

virtual_table

domain: client

language: javascript

class Item class

Description

Use the read-only virtual_table property to find out if the item has a corresponding table in the project database.

If virtual_table is True there is no corresponding table in the project database. You can use these items to
work with in-memory dataset or use its modules to write code. Calling the open method creates an empty data set, and
calling the apply method does nothing.

Mehods

add_edit_button

add_edit_button(text, options)

domain: client

language: javascript

Description

Use add_edit_button to dynamically add a button in the edit form.

This method have the same parameters as the add_view_button method

272 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

add_view_button

add_view_button(text, options)

domain: client

language: javascript

Description

Use add_view_button to dynamically add a button in the view form.

This method is usually used in the on_view_form_created events.

The following parameters are passed to the method:

• text - the text that will be displayed on the button

• options - options that specify additional properties of the button

The options parameter is an object that may have following attributes:

• parent_class_name is a class name of the parent element, the default value is ‘form-footer’

• btn_id - the id attribute of the button

• btn_class - the class of the button

• type - specifies the type (color) of the button, it can be one of the following text values:

– primary

– success

– info

– warning

– danger

• image - an icon class, one of the icons by Glyphicons from http://getbootstrap.com/2.3.2/base-css.html

• secondary: if this attribute is set to true, the button will be right aligned if Buttons on top attribute of the
View Form Dialog is set, otherwise left aligned.

• expanded - if set to true the button will have class ‘expanded-btn’ and that defines its min-width to 120px,
default true

The method returns a JQuery object of the button.

Examples

function on_view_form_created(item) {
var btn = item.add_view_button('Select', {type: 'primary'});
btn.click(function() {

item.select_records('track');
});

}

function on_view_form_created(item) {
if (!item.view_form.hasClass('modal')) {

(continues on next page)

7.1. Client side (javascript) class reference 273

http://getbootstrap.com/2.3.2/base-css.html

Jam.py documentation Documentation

(continued from previous page)

var print_btn = item.add_view_button('Print', {image: 'icon-print'}),
email_btn = item.add_view_button('Send email', {image: 'icon-pencil'});

email_btn.click(function() { send_email() });
print_btn.click(function() { print(item) });

}
}

append

append()

domain: client

language: javascript

class Item class

Description

Open a new, empty record at the end of the dataset.

After a call to append, an application can enable users to enter data in the fields of the record, and can then post those
changes to the item dataset using post method, and then apply them to the item database table, using apply method.

The append method

• checks if item dataset is active , otherwise raises exception

• if the item is a detail , checks if the master item is in edit or insert state , otherwise raises exception

• if the item is not a detail checks if it is in browse state , otherwise raises exception

• triggers the on_before_append event handler if one is defined for the item

• open a new, empty record at the end of the dataset

• puts the item into insert state

• triggers the on_after_append event handler if one is defined for the item.

• updates data-aware controls

See also

Modifying datasets

append_record

append_record(container)

domain: client

language: javascript

class Item class

274 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

Open a new, empty record at the end of the dataset and creates an edit_form for visuall editing of the record.

If container parameter (Jquery object of the DOM element) is specified the edit form html template is inserted in
the container.

If container parameter is not specified but Modeless form attribute is set in the Edit Form Dialog or modeless
attribute of the edit_options is set programmatically and task has the forms_in_tabs attribute set and the application
doesn’t have modal forms, the modeless edit form will be created in the new tab of the forms_container object of the
task.

In all other cases the modal form will be created.

If adding of a record is allowed in modeless mode, the application calls the copy method to create a copy of the item.
This copy will be used to append the record.

The append_record method

• calls the can_create method to check whether a user have a right to append a record, and if not, returns

• checks whether the item is in edit or insert state , and if not, calls the append method to append a record

• calls the create_edit_form method to create a form for visuall editing of the record

See also

Modifying datasets

append

can_create

apply

apply(callback, params, async)

domain: client

language: javascript

class Item class

Description

Sends all updated, inserted, and deleted records from the item dataset to the application server for writing to the
database.

The apply method can have the following parameters:

• callback: if the parameter is not present and async parameter is false or undefined, the request to
the server is sent synchronously, otherwise, the request is executed asynchronously and after the response is
received, the callback is executed

• params - an object specifying user defined params, that can be used on the server in the on_apply event handler
for some additional processing

• async: if its value is true, and callback parameter is missing, the request is executed asynchronously

7.1. Client side (javascript) class reference 275

Jam.py documentation Documentation

The order of parameters doesn’t matter.

The apply method

• checks whether the item is a detail, and if it is, returns (the master saves the details changes)

• checks whether the item is in edit or insert state , and if so, posts the record

• checks if the change log has changes, and if not, executes callback if it is passed and then returns

• triggers the on_before_apply event handler if one is defined for the item

• sends changes to the server

• server on receiving the request checks whether on_apply event handler is defined for the item, and if it is,
executes it, otherwise generates and executes SQL query to write changes to the database, see also on_apply
events topic

• when generating an SQL query, checks whether a user, that send the request, has rights to make these changes,
if not raises an exception

• writes changes to the database

• after writing changes to the database, server sends to the client results of the execution

• if exception was raised during the operation on the server the client throws an exception, before throwing excep-
tion, if the callback parameter is passed, it is called and the error is passed as the callback function parameter

• the client, based on the results, updates the change log

• triggers the on_after_apply event handler if one is defined for the item

• if the callback parameter is passed, it is called.

Note: The server, before writing new records to the database table, generates values for the primary fields. The client
updates these fields, based on information received from the server. If you change values of some other fields in the
on_apply event handler, these changes will not be reflected on the client. You can update them yourself using, for
example, refresh_record method

Example

var self = this;
this.apply(function(err) {

if (err) {
self.alert_error(err);

}
else {

//some code to execute after appling changes
}

});

See also

Modifying datasets

276 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

apply_record

apply_record()

domain: client

language: javascript

class Item class

Description

Writes changes to the application dataset.

The apply_record method

• calls the apply to writes changes to the dataset.

• calls the close_edit_form method to destroy the edit_form

See also

Modifying datasets

close_edit_form

apply

assign_filters

assign_filters(item)

domain: client

language: javascript

class Item class

Description

Use assign_filters to set filter values of the item to values of filters of the item parameter.

Example

function calc_footer(item) {
var copy = item.copy({handlers: false, details: false});
copy.assign_filters(item);
copy.open(

{fields: ['subtotal', 'tax', 'total'],
funcs: {subtotal: 'sum', tax: 'sum', total: 'sum'}},
function() {

var footer = item.view_form.find('.dbtable.' + item.item_name + ' tfoot');
copy.each_field(function(f) {

footer.find('div.' + f.field_name)

(continues on next page)

7.1. Client side (javascript) class reference 277

Jam.py documentation Documentation

(continued from previous page)

.css('text-align', 'right')

.css('color', 'black')

.text(f.display_text);
});

}
);

}

See also

Filtering records

Filters

bof

bof()

domain: client

language: javascript

class Item class

Description

Test bof (beginning of file) method to determine if the cursor is positioned at the first record in an item dataset.

If bof returns true, the cursor is unequivocally on the first row in the dataset. bof returns true when an application

• Opens an item dataset.

• Calls an item’s first method.

• Call an item’s prior method, and the method fails (because the cursor is already on the first row in the dataset).

bof returns false in all other cases.

Note: If both eof and bof return true, the item dataset is empty.

See also

Dataset

Navigating datasets

calc_summary

calc_summary(detail, fields)

278 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

domain: client

language: javascript

class Item class

Description

Use the calc_summary method to calculate sums for fields of a detail and save these values in fields of its master in
the on_detail_changed event handler.

The detail parameter is the detail for the fields of which the sums are calculated.

The fields parameter is an object that defines the correspondence between the master and detail fields. The keys
of this object are the master fields, the values are the corresponding details fields. If the detail field is a numeric field,
its sum is calculated, otherwise the resulting value will be the number of records. The value of this object can be a
function that returns the result of the calculation for a record of the detail.

Example

function on_detail_changed(item, detail) {
var fields = [

{"total": "total"},
{"tax": "tax"},
{"subtotal": function(d) {return d.quantity.value * d.unitprice.value}}

];
item.calc_summary(detail, fields);

}

See also

on_detail_changed Details

can_create

can_create()

domain: client

language: javascript

class Item

Description

Use can_create method to determine if a user have a right to create a new record.

This method takes into account the user permissions set in the roles node in the Application Builder when the project
safe mode parameter is set as well as the values of the permissions attribute and the value of can_modify attribute.

7.1. Client side (javascript) class reference 279

Jam.py documentation Documentation

Example

if (item.can_create()) {
item.view_form.find("#new-btn").on('click',

function() {
item.append_record();

}
);

}
else {

item.view_form.find("#new-btn").prop("disabled", true);
}

See also

Parameters

can_delete

can_delete()

domain: client

language: javascript

class Item

Description

Use can_delete method to determine if a user have a right to delete a record of an item dataset.

This method takes into account the user permissions set in the roles node in the Application Builder when the project
safe mode parameter is set as well as the values of the permissions attribute and the value of can_modify attribute.

Example

if (item.can_delete()) {
item.view_form.find("#delete-btn").on('click',

function() {
item.delete_record();

}
);

}
else {

item.view_form.find("#delete-btn").prop("disabled", true);
}

can_edit

can_edit()

280 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

domain: client

language: javascript

class Item

Description

Use can_edit method to determine if a user have a right to edit a record of an item dataset.

This method takes into account the user permissions set in the roles node in the Application Builder when the project
safe mode parameter is set as well as the values of the permissions attribute and the value of can_modify attribute.

Example

if (item.can_edit()) {
item.view_form.find("#edit-btn").on('click',

function() {
item.edit_record();

}
);

}
else {

item.view_form.find("#edit-btn").prop("disabled", true);
}

cancel

cancel()

domain: client

language: javascript

class Item class

Description

Call cancel to undo modifications made to one or more fields belonging to the current record, as long as those
changes are not already posted to the item dataset.

Cancel

• triggers the on_before_cancel event handler if one is defined for the item.

• to undo modifications made to the current record and its details if the record has been edited or removes the new
record if one was appended or inserted.

• puts the item into browse state

• triggers the on_after_cancel event handler if one is defined for the item.

• updates data-aware controls

7.1. Client side (javascript) class reference 281

Jam.py documentation Documentation

See also

Modifying datasets

cancel_edit

cancel_edit()

domain: client

language: javascript

class Item class

Description

Cancel visual editing on the record

The cancel_edit method

• calls the close_edit_form method to destroy the edit_form

• calls the cancel method to undo modifications made to the record

See also

Modifying datasets

close_edit_form

cancel

clear_filters

clear_filters()

domain: client

language: javascript

class Item class

Description

Use clear_filters to set filter values of the item to null.

See also

Filtering records

Filters

282 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

clone

clone(keep_filtered)

domain: client

language: javascript

class Item class

Description

Use the clone method to create a copy of an item that shares with it its dataset. The clone item has its own cursor, so
you can navigate it and the cursor position of the item doesn’t change.

Set the keep_filtered parameter to true if you want the clone to have the same local filter as the item.

Example

function calc_sum(item) {
var clone = item.clone(),

result = 0;
clone.each(function(c) {

result += c.sum.value;
})
return result;

}

See also

on_filter_record

close

close()

domain: client

language: javascript

class Item class

Description

Call lose to close an item dataset. After dataset is closed the active property is false.

See also

Dataset

open

7.1. Client side (javascript) class reference 283

Jam.py documentation Documentation

close_edit_form

close_edit_form()

domain: client

language: javascript

class Item class

Description

Use close_edit_form method to close the edit form of the item.

The close_edit_form method triggers the on_edit_form_close_query event handler of the item, if one is defined.
If the event handler is defined and

• returns true - the form is destroyed, the item’s edit_form atrribute is set to undefined and the methods exits

• return false - the operation is aborted and the methods exits,

If it don’t return a value (undefined) the method triggers the on_edit_form_close_query of the group that owners the
item, if one is defined for the group. If this event handler is defined and

• returns true - the form is destroyed, the item’s edit_form atrribute is set to undefined and the methods exits

• return false - the operation is aborted and the methods exits,

If it don’t return a value (undefined) the method triggers the on_edit_form_close_query of the task. If this event handler
is defined and

• returns true - the form is destroyed, the item’s edit_form atrribute is set to undefined and the methods exits

• return false - the operation is aborted and the methods exits,

If no event handler is defined or none of these event handlers return false, the form is destroyed and the item’s
edit_form atrribute is set to undefined.

See also

Forms

create_edit_form

edit_form

close_filter_form

close_filter_form()

domain: client

language: javascript

class Item class

284 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

Use close_filter_form method to close the filter form of the item.

The close_filter_form method triggers the on_filter_form_close_query event handler of the item, if one is
defined. If the event handler is defined and

• returns ``false`` - the form is destroyed, the item’s filter_form atrribute is set to undefined and the methods
exits

• return false - the operation is aborted and the methods exits,

If it don’t return a value (undefined) the method triggers the on_filter_form_close_query of the group that owners the
item, if one is defined for the group. If this event handler is defined and

• returns true - the form is destroyed, the item’s filter_form atrribute is set to undefined and the methods exits

• return false - the operation is aborted and the methods exits,

If it don’t return a value (undefined) the method triggers the on_filter_form_close_query of the task. If this event
handler is defined and

• returns true - the form is destroyed, the item’s filter_form atrribute is set to undefined and the methods exits

• return false - the operation is aborted and the methods exits,

If no event handler is defined or none of these event handlers return false, the form is destroyed and the item’s
filter_form atrribute is set to undefined.

See also

Forms

create_filter_form

filter_form

close_view_form

close_view_form()

domain: client

language: javascript

class Item class

Description

Use close_view_form method to close the view form of the item.

The close_view_formmethod triggers the on_view_form_close_query event handler of the item, if one is defined.
If the event handler is defined and

• returns true - the form is destroyed, the item’s view_form atrribute is set to undefined and the methods exits

• return false - the operation is aborted and the methods exits,

If it don’t return a value (undefined) the method triggers the on_view_form_close_query of the group that owners the
item, if one is defined for the group. If this event handler is defined and

7.1. Client side (javascript) class reference 285

Jam.py documentation Documentation

• returns true - the form is destroyed, the item’s view_form atrribute is set to undefined and the methods exits

• return false - the operation is aborted and the methods exits,

If it don’t return a value (undefined) the method triggers the on_view_form_close_query of the task. If this event
handler is defined and

• returns true - the form is destroyed, the item’s view_form atrribute is set to undefined and the methods exits

• return false - the operation is aborted and the methods exits,

If no event handler is defined or none of these event handlers return false, the form is destroyed and the item’s
view_form atrribute is set to undefined.

See also

Forms

view

view_form

copy

copy(options)

domain: client

language: javascript

class Item class

Description

Use copy to create a copy of an item. The created copy is not added to the task tree and will be destroyed by JavaScript
garbage collection process when no longer needed.

All attributes of the copy object are defined as they were at the time of loading of the task tree when application started.
See Workflow

Options parameter further specifies the created copy. It can have the following attributes:

• handlers - if the value of this attribute is true, all the settings to the item made in the Form Dialogs in
the Application Builder and all the functions and events defined in the client module of the item will also be
available in the copy. The default value is true.

• filters - if the value of this attribute is true, the filters will be created for the copy, otherwise there will be
no filters. The default value is true.

• details - if the value of this attribute is true, the details will be created for the copy, otherwise there will be
no details. The default value is true.

Example

The following code is used in the Demo project to asynchronously calculate total values of the fields, displayed at the
foot of the Invoice journal table:

286 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

function on_filter_applied(item) {
var copy = item.copy({handlers: false, details: false});
copy.assign_filters(item);
copy.open(

{fields: ['subtotal', 'tax', 'total'],
funcs: {subtotal: 'sum', tax: 'sum', total: 'sum'}},
function() {

var footer = item.view_form.find('.dbtable.' + item.item_name + ' tfoot');
copy.each_field(function(f) {

footer.find('div.' + f.field_name)
.css('text-align', 'right')
.css('color', 'black')
.text(f.display_text);

});
}

);
}

See also

Task tree

Workflow

create_detail_views

create_detail_views(container)

domain: client

language: javascript

Description

Use create_detail_views to create view froms of the details of the item. These details can be specified in the
Edit details attribute of the Edit Form Dialog or set in the edit_details attribute of the edit_options.

This method is usually used in the on_edit_form_created event handler.

The following parameters are passed to the method:

• container - a JQuery object that will contain view form of the details, if there is no container, the method
returns.

If there is more than one detail, the method creates view forms in tabs.

If details are not active , the method calls their open method.

Example

function on_edit_form_created(item) {
item.edit_form.find("#cancel-btn").on('click.task', function(e) { item.cancel_

→˓edit(e) });
item.edit_form.find("#ok-btn").on('click.task', function() { item.apply_record() }

→˓); (continues on next page)

7.1. Client side (javascript) class reference 287

Jam.py documentation Documentation

(continued from previous page)

if (!item.master && item.owner.on_edit_form_created) {
item.owner.on_edit_form_created(item);

}

if (item.on_edit_form_created) {
item.on_edit_form_created(item);

}

item.create_inputs(item.edit_form.find(".edit-body"));
item.create_detail_views(item.edit_form.find(".edit-detail"));

return true;
}

create_edit_form

create_edit_form(container)

domain: client

language: javascript

class Item class

Description

Use create_edit_form method to create an edit form of the item for visual editing of a record.

The method searches for an item html template in the task templates attribute (See Forms), creates a clone of the
template and assigns it to the item edit_form attribute.

If container parameter is specified the method empties it and appends the html template to it. Otherwise it creates
a modal form and appends the html to it.

Triggers the on_edit_form_created of the task.

Triggers the on_edit_form_created of the group that owners the item, if one is defined for the group.

Triggers the on_edit_form_created of the item, if one is defined.

Assigns the JQuery keyup and keydown events to the edit_form so that when an JQuery event of the window occurs,
the on_edit_form_keyup and on_edit_form_keydown events are triggered. They are triggered (if defined)
in the same way: first the task event handler, the group event handler and then the event handler of the item itself.
After that the JQuery stopPropagation method of the event is called.

If the form is modal, shows it. Before showing the form the method applies options specidied in the edit_options
attribute.

Triggers the on_edit_form_shown of the task.

Triggers the on_edit_form_shown of the group that owners the item, if one is defined for the group.

Triggers the on_edit_form_shown of the item, if one is defined.

288 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Forms

edit_form

edit_options

create_edit_form

close_edit_form

create_filter_form

create_filter_form(container)

domain: client

language: javascript

class Item class

Description

Use create_filter_form method to create an filter form of the item for visual editing item filters.

The method searches for an item html template in the task templates attribute (See Forms), creates a clone of the
template and assigns it to the item filter_form attribute.

If container parameter is specified the method empties it and appends the html template to it. Otherwise it creates
a modal form and appends the html to it.

Triggers the on_filter_form_created of the task.

Triggers the on_filter_form_created of the group that owners the item, if one is defined for the group.

Triggers the on_filter_form_created of the item, if one is defined.

Assigns the JQuery keyup and keydown events to the filter_form so that when an JQuery event of the window occurs,
the on_filter_form_keyup and on_filter_form_keydown events are triggered. They are triggered (if
defined) in the same way: first the task event handler, the group event handler and then the event handler of the item
itself. After that the JQuery stopPropagation method of the event is called.

If the form is modal, shows it. Before showing the form the method applies options specidied in the filter_options
attribute.

Triggers the on_filter_form_shown of the task.

Triggers the on_filter_form_shown of the group that owners the item, if one is defined for the group.

Triggers the on_filter_form_shown of the item, if one is defined.

See also

Forms

filter_form

filter_options

close_filter_form

7.1. Client side (javascript) class reference 289

Jam.py documentation Documentation

create_filter_inputs

create_filter_inputs(container, options)

domain: client

language: javascript

Description

Use create_filter_inputs to create data-aware visual controls (inputs, cheboxes) for editing filters of an item.

This method is usually used in on_filter_form_created events triggered by create_filter_form method.

The following parameters are passed to the method:

• container - a JQuery object that will contain visual controls, if container length is 0 (no container), the
method returns.

• options - options that specify how controls are displayed

The options parameter is an object that may have following attributes:

• filters - a list of filter names. If specified, a visual control will be created for each filter whose name is in
this list, if not specified (the default) then the fields attribute of an filter_options will be used (by default it lists
all visible filters specified in the Application builder),

• col_count - the number of columns that will be created for visual controls, the default value is 1.

• label_on_top: the default value is false. If this value is false, the labels are placed to the left of controls,
otherwise the are created above the controls

• tabindex - if tabindex is specified, it will the tabindex of the first visual control, tabindex of all subsequent
controls will be increased by 1.

• autocomplete - the default value is false. If this attribute is set to true, the autocomplete attribute of controls
is set to “on”

Before creating controls the application empties the container.

Example

function on_filter_form_created(item) {
item.filter_options.title = item.item_caption + ' - filter';
item.create_filter_inputs(item.filter_form.find(".edit-body"));
item.filter_form.find("#cancel-btn").on('click.task', function() {

item.close_filter()
});
item.filter_form.find("#ok-btn").on('click.task', function() {

item.apply_filter()
});

}

See also

filters

create_filter_form

290 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

filter_form

filter_options

create_inputs

create_inputs(container, options)

domain: client

language: javascript

Description

Use create_inputs to create data-aware visual controls (inputs, checkboxes) for editing fields of the item.

This method is usually used in the on_edit_form_created events.

The following parameters are passed to the method:

• container - a JQuery object that will contain visual controls, if container length is 0 (no container), the
method returns.

• options - options that specify how controls are displayed

The options parameter is an object that may have following attributes:

• fields - a list of field names. If specified, a visual control will be create for each field whose name is in this
list, if not specified then the fields attribute of edit_options will be used (if defined), otherwise the layout,
created in the Edit Form Dialog of Application builder, will be created

• col_count - the number of columns that will be created for visual controls, the default value is 1,

Before creating controls the application empties the container.

Example

function on_edit_form_created(item) {
item.create_inputs(item.edit_form.find(".left-div"),

{fields: ['firstname', 'lastname', 'company', 'support_rep_id']}
);

}

See also

fields

Data-aware controls

create_edit_form

7.1. Client side (javascript) class reference 291

Jam.py documentation Documentation

create_table

create_table(container, options)

domain: client

language: javascript

Description

Use create_table method to create a table that displays records of the item dataset.

The behavior of the table is determined by the paginate attribute of the item.

When paginate is true, a paginator will be created, that will internally update the item dataset when the page is changed.

If the value of paginate is false, all available records of the item dataset will be displayed in the table.

The table, created by this method is data aware, when you change the dataset, these changes are immediately reflected
in the table. So you can create a table and then call the open method.

The following parameters could be passed to the method:

• container - a JQuery object that will contain the table, if container length is 0 (no container), the method
returns. Before creating the table the application empties the container.

• options - options that specify the way the table will be displayed. By default, the method uses the ta-
ble_options that are set in the View Form Dialog in Application Builder when creating the table. The options
attributes take precedence over the table_options attributes.

The options parameter is an object that may have the same attributes as table_options.

Examples

function on_edit_form_created(item) {
item.edit_options.width = 1050;
item.invoice_table.create_table(item.edit_form.find(".edit-detail"),

{
height: 400,
editable_fields: ['quantity'],
column_width: {"track": "60%"}

});
}

See also

Forms

Data-aware controls

create_view_form

create_view_form(container)

292 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

domain: client

language: javascript

class Item class

Description

Use create_view_form method to create a view form of the item.

Then it searches for an item html template in the task templates attribute (See Forms) and creates a clone of the
template and assigns it to the item view_form attribute.

If container parameter is specified the method empties it and appends the html template to it. Otherwise it creates
a modal form and appends the html to it.

Triggers the on_view_form_created of the task.

Triggers the on_view_form_created of the group that owners the item, if one is defined for the group.

Triggers the on_view_form_created of the item, if one is defined.

Assigns the JQuery keyup and keydown events to the view_form so that when an JQuery event of the window occurs,
the on_view_form_keyup and on_view_form_keydown events are triggered. They are triggered (if defined)
in the same way: first the task event handler, the group event handler and then the event handler of the item itself.
After that the JQuery stopPropagation method of the event is called.

If the form is modal, shows it. Before showing the form the method applies options specidied in the view_options
attribute.

Triggers the on_view_form_shown of the task.

Triggers the on_view_form_shown of the group that owners the item, if one is defined for the group.

Triggers the on_view_form_shown of the item, if one is defined.

Forms

view_form

view_options

close_view_form

delete

delete()

domain: client

language: javascript

class Item class

Description

Deletes the active record and positions the cursor on the next record.

The delete method

• checks if item dataset is active, otherwise raises exception

7.1. Client side (javascript) class reference 293

Jam.py documentation Documentation

• checks if item dataset is not empty, otherwise raises exception

• if item is a detail , checks if the master item is in edit or insert state, otherwise raises exception.

• if item is not a detail , checks if it is in browse state, otherwise raises exception.

• triggers the on_before_delete event handler if one is defined for the item.

• puts the item into delete state

• deletes the active record and positions the cursor on the next record

• puts the item into browse state

• triggers the on_after_delete event handler if one is defined for the item

• updates data-aware controls

See also

Modifying datasets

delete_record

delete_record()

domain: client

language: javascript

class Item class

Description

• calls the can_delete method to check whether a user have a right to delete a record, and if not, returns

• asks a user to confirm the operation

• calls the delete method to delete the record

• calls the apply method to write changes to the application database

See also

Modifying datasets

delete

disable_controls

disable_controls()

domain: client

language: javascript

class Item class

294 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

Call disable_controls to “turn off” data-aware controls, so they will not refrect changes to the item dataset data.

Call enable_controls to re-enable data display in data-aware controls associated with the dataset and update values
they display.

Example

function calculate(item) {
var subtotal,

tax,
total,
rec;

if (!item.calculating) {
item.calculating = true;
try {

subtotal = 0;
tax = 0;
total = 0;
item.invoice_table.disable_controls();
rec = item.invoice_table.rec_no;
try {

item.invoice_table.each(function(d) {
subtotal += d.amount.value;
tax += d.tax.value;
total += d.total.value;

});
}
finally {

item.invoice_table.rec_no = rec;
item.invoice_table.enable_controls();

}
item.subtotal.value = subtotal;
item.tax.value = tax;
item.total.value = total;

}
finally {

item.calculating = false;
}

}
}

See also

Data-aware controls

enable_controls

disable_edit_form

disable_edit_form()

7.1. Client side (javascript) class reference 295

Jam.py documentation Documentation

domain: client

language: javascript

class Item class

Description

Call disable_edit_form to prevent any user actions when edit_form is visible.

Call enable_edit_form to re-enable edit form.

Example

function on_edit_form_created(item) {
var save_btn = item.add_edit_button('Save and continue');
save_btn.click(function() {

if (item.is_changing()) {
item.disable_edit_form();
item.post();
item.apply(function(error){

if (error) {
item.alert_error(error);

}
item.edit();
item.enable_edit_form();

});
}

});
}

See also

enable_edit_form

each

each(function(item))

domain: client

language: javascript

class Item class

Description

Use each method to iterate over records of an item dataset.

The each() method specifies a function to run for each record. You can break the each loop at a particular iteration by
making the callback function return false.

296 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Example

In the example below the t and item.invoice_table are pointers to the same object:

var subtotal = 0,
tax = 0,
total = 0;

item.invoice_table.each(function(t) {
subtotal += t.amount.value;
tax += t.tax.value;
total += t.total.value;

});

See also

Navigating datasets

each_detail

each_detail(function(detail))

domain: client

language: javascript

class Item class

Description

Use each method to iterate over details of an item.

The each_detail() method specifies a function to run for each detail of the item (the current detail is passed as a
parameter).

You can break the each_detail loop at a particular iteration by making the callback function return false.

See also

Details

each_field

each_field(function(field))

domain: client

language: javascript

class Item class

7.1. Client side (javascript) class reference 297

Jam.py documentation Documentation

Description

Use each_field method to iterate over fields owned by an item.

The each_field() method specifies a function to run for each field (the current field is passed as a parameter).

You can break the each_field loop at a particular iteration by making the callback function return false.

Example

function customer_fields(customers) {
customers.open({limit: 1});
customers.each_field(function(f) {

console.log(f.field_caption, f.display_text);
});

}

Fields

Field class

each_filter

each_filter(function(filter))

domain: client

language: javascript

class Item class

Description

Use each_filter method to iterate over filters owned by an item.

The each_filter() method specifies a function to run for each filter (the current filter is passed as a parameter).

You can break the each_filter loop at a particular iteration by making the callback function return false.

Example

function customer_filters(customers) {
customers.each_filter(function(f) {

console.log(f.filter_caption, f.value);
});

}

Filters

Filter class

298 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

edit

edit()

domain: client

language: javascript

class Item class

Description

Enables editing of data in the dataset.

After a call to edit, an application can enable users to change data in the fields of the record, and can then post those
changes to the item dataset using post method, and then apply them to database using apply method.

The edit method

• checks if the item dataset is active, otherwise raises exception

• checks if the item dataset is not empty, otherwise raises exception

• checks whether the item dataset is already in edit state, and if so, returns

• if item is a detail , checks if the master item is in edit or insert state , otherwise raises exception

• if item is not a detail , checks if it is in browse state , otherwise raises exception

• triggers the on_before_edit event handler if one is defined for the item

• puts the item into edit state , enabling the application or user to modify fields in the record

• triggers the on_after_edit event handler if one is defined for the item

See also

Modifying datasets

edit_record

edit_record(container)

domain: client

language: javascript

class Item class

Description

Puts the current record in edit state and creates an edit_form for visual editing of the record.

If container parameter (Jquery object of the DOM element) is specified the edit form html template is inserted in
the container.

If container parameter is not specified but Modeless form attribute is set in the Edit Form Dialog or modeless
attribute of the edit_options is set programmatically and task has the forms_in_tabs attribute set and the application

7.1. Client side (javascript) class reference 299

Jam.py documentation Documentation

doesn’t have modal forms, the modeless edit form will be created in the new tab of the forms_container object of the
task.

In all other cases the modal form will be created.

If editing is allowed in modeless mode, the user can edit several records at the same time. In this case the application
calls the copy method to create a copy of the item. This copy will be used to edit the record. The application will call
its open method to get the record from the server by using the value of the primary key field as a filter.

In case of modal editing the application executes refresh_record methods to get from the server the latest data of the
record.

If a record locking is enabled for the item, along with receiving the record data from the server the application receives
the version of the record.

Then the edit_record method

• calls the can_edit method to check whether a user have a right to edit the record,

• if the user have a right to edit the record, checks whether the item is in edit or insert state , and if not, calls the
edit method to edit the record

• calls the create_edit_form method to create a form for visual editing of the record

See also

Forms

Modifying datasets

edit

can_create

Record locking

enable_controls

enable_controls()

domain: client

language: javascript

class Item class

Description

Call enable_controls to permit data display in data-aware controls and and redraw them after a prior call to
disable_controls.

See also

Data-aware controls

disable_controls.

300 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

enable_edit_form

enable_edit_form()

domain: client

language: javascript

class Item class

Description

Call enable_edit_form to re-enable edit form after prior call to disable_edit_form

Example

function on_edit_form_created(item) {
var save_btn = item.add_edit_button('Save and continue');
save_btn.click(function() {

if (item.is_changing()) {
item.disable_edit_form();
item.post();
item.apply(function(error){

if (error) {
item.alert_error(error);

}
item.edit();
item.enable_edit_form();

});
}

});
}

See also

disable_edit_form

eof

eof()

domain: client

language: javascript

class Item class

Description

Test eof (end-of-file) to determine if the cursor is positioned at the last record in an item dataset. If eof returns true,
the cursor is unequivocally on the last row in the dataset. eof returns true when an application:

• Opens an empty dataset.

7.1. Client side (javascript) class reference 301

Jam.py documentation Documentation

• Calls an item’s last method.

• Call an item’s next method, and the method fails (because the cursor is already on the last row in the dataset).

eof returns false in all other cases.

Note: If both eof and bof return true, the item dataset is empty.

See also

Dataset

Navigating datasets

field_by_name

field_by_name(field_name)

domain: client

language: javascript

class Item class

Description

Call field_by_name to retrieve field information for a field when only its name is known.

The field_name parameter is the name of an existing field.

field_by_name returns the field object for the specified field. If the specified field does not exist,
field_by_name returns null.

filter_by_name

filter_by_name(filter_name)

domain: client

language: javascript

class Item class

Description

Call filter_by_name to retrieve filter information for a filter when only its name is known.

The filter_name parameter is the name of an existing filter.

filter_by_name returns the filter object for the specified filter. If the specified filter does not exist,
filter_by_name returns null.

302 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

first

first()

domain: client

language: javascript

class Item class

Description

Call first to position the cursor on the first record in the item dataset and make it the active record. First posts
any changes to the active record.

See also

Dataset

Navigating datasets

insert

insert()

domain: client

language: javascript

class Item class

Description

Inserts a new, empty record in the item dataset.

After a call to insert, an application can enable users to enter data in the fields of the record, and can then post those
changes to the item dataset using post method, and then apply them to the item database table, using apply method.

The insert method

• checks if item dataset is active , otherwise raises exception

• if the item is a detail , checks if the master item is in edit or insert state , otherwise raises exception

• if the item is not a detail checks if it is in browse state , otherwise raises exception

• triggers the on_before_append event handler if one is defined for the item

• inserts a new, empty record in the item dataset.

• puts the item into insert state

• triggers the on_after_append event handler if one is defined for the item.

• updates data-aware controls

7.1. Client side (javascript) class reference 303

Jam.py documentation Documentation

See also

Modifying datasets

insert_record

insert_record(container)

domain: client

language: javascript

class Item class

Description

Open a new, empty record at the beginning of the dataset and creates an edit_form for visuall editing of the record.

If container parameter (Jquery object of the DOM element) is specified the edit form html template is inserted in
the container.

If container parameter is not specified but Modeless form attribute is set in the Edit Form Dialog or modeless
attribute of the edit_options is set programmatically and task has the forms_in_tabs attribute set and the application
doesn’t have modal forms, the modeless edit form will be created in the new tab of the forms_container object of the
task.

In all other cases the modal form will be created.

If insertion of a record is allowed in modeless mode, the application calls the copy method to create a copy of the item.
This copy will be used to insert the record.

The insert_record method

• calls the can_create method to check whether a user have a right to insert a record, and if not, returns

• checks whether the item is in edit or insert state , and if not, calls the insert method to insert a record

• calls the create_edit_form method to create a form for visuall editing of the record

See also

Forms

Modifying datasets

insert

can_create

is_changing

is_changing()

domain: client

language: javascript

class Item class

304 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

Checks if an item is in edit or insert state and returns true if it is.

An application calls edit to put an item into edit state and append or insert to put an item into insert state.

See also

Modifying datasets

is_edited

is_edited()

domain: client

language: javascript

class Item class

Description

Checks if an item is in edit state and returns true if it is.

An application calls edit to put an item into edit state.

See also

Modifying datasets

is_modified

is_modified()

domain: client

language: javascript

class Item class

Description

Checks if the current record of an item dataset has been modified during edit or insert opertaions. The method returns
false after the post method is executed.

See also

Modifying datasets

7.1. Client side (javascript) class reference 305

Jam.py documentation Documentation

is_new

is_new()

domain: client

language: javascript

class Item class

Description

Checks if an item is in insert state and returns true if it is.

An application calls append or insert methods to put an item into insert state.

See also

Modifying datasets

last

last()

domain: client

language: javascript

class Item class

Description

Call last to position the cursor on the last record in the item dataset and make it the active record.

See also

Dataset

Navigating datasets

locate

locate(fields, values)

domain: client

language: javascript

class Item class

306 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

Implements a method for searching an item dataset for a specified record and makes that record the active record.

Arguments:

• fields: a field name, or list of field names

• values: a field value of list of field values

This method locates the record where the fields specified by fields parameter have the values specified by values
parameter.

Locate returns true if a record is found that matches the specified criteria and the cursor repositioned to that record.

If a matching record was not found and the cursor is not repositioned, this method returns false.

See also

Dataset

Navigating datasets

next

next()

domain: client

language: javascript

class Item class

Description

Call next to position the cursor on the next record in the item dataset and make it the active record. Next posts any
changes to the active record.

See also

Dataset

Navigating datasets

open

open(options, callback, async)

domain: client

language: javascript

class Item class

7.1. Client side (javascript) class reference 307

Jam.py documentation Documentation

Description

Call open to sends a request to the server for obtaining an item dataset.

The open method can have the following parameters:

• options - an object that specifies the parameters of the request sent to the server

• callback: if the parameter is not present, the request is sent to the server synchronously, otherwise, the
request is executed asynchronously and after the dataset is received, the callback is executed

• async: if its value is true, and callback parameter is missing, the request is executed asynchronously

The order of parameters doesn’t matter.

The method initializes the item fields, formulates parameters of a request, based on the options and triggers the
on_before_open event handler if one is defined for the item.

After that it sends the request to the server. If callback parameter-function is specified, the request is executed
asynchronously, otherwise - synchronouslly.

The server, after recieving the request, checks if the corresponding item on the server (item of the task tree with the
same ID attribute) has the on_open event handler. If so it executes this event handler and returns the result of the
execution to the client, otherwise generates a SELECT SQL query, based on parameters of the request, executes this
query and returns the result to the client.

The client, after receiving the result of the request, changes its dataset and sets active to true, the item_state to browse
mode, goes to the first record of the dataset, triggers on_after_open and on_filters_applied event handlers (if they are
defined for the item), and updates controls.

Then it calls callback function if it was specified.

Options

The options object parameter can have the following attributes:

• expanded - if the value of this attribute is true, the SELECT query, generated on the server, will have JOIN
clauses to get lookup values of the lookup fields , otherwise no lookup values will be returned. The default value
if true.

• fields - use this parameter to specify the WHERE clause of the SELECT query. This parameter is a list of
field names. If it is omitted, the fields defined by the set_fields method will be used. If the set_fields method was
not called before the open method execution, all the fields created by a developer will be used.

• where - use this parameter to specify how records will be filtered in the SQL query. This parameter is an object
of key-value pairs, where keys are field names, that are followed, after double underscore, by a filtering symbols
(see Filtering records). If this parameter is omitted, values defined by the set_where method will be used. If the
set_where method was not called before the open method execution, and where parameter is omitted, then the
values of filters defined for the item will be used to filter records.

• order_by - use order_by to specify sort order of the records. This parameter is a list of field names. If there
is a sign ‘-’ before the field name, then on this field records will be sorted in decreasing order. If this parameter
is omitted, a list defined by the set_order_by method will be used.

• offset - use offset to specify the offset of the first row to return.

• limit - use limit to limit the output of a SQL query to the first so-many rows.

• funcs - this parameter can be a an object of key-value pairs, where key is a field name and value is function
name that will be applied to the field in the SELECT Query

308 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

• group_by - use group_by to specify fields to group the result of the query by. This parameter must be a list
of field names.

• open_empty - if this parameter is set to true, the application does not send a request to the server but just
initializes an empty dataset. The default value if false.

• params - use the parameter to pass some user defined options to be used in the on_open event handler on the
server. This parameter must be an object of key-value pairs

Note: When the paginate attribute of the item is set to true and a table is created by the create_table method, the
limit and offset parameters are set internally by the table depending on its row number and current page.

Examples

function get_customer_sales(task, customer_id) {
var date1 = new Date(new Date().setYear(new Date().getFullYear() - 5)),

date2 = new Date(),
invoices = task.invoices.copy();

invoices.open({
fields: ['customer', 'invoicedate', 'total'],
where: {customer: customer_id, invoicedate__ge: date1, invoicedate__le: date2}

→˓,
order_by: ['invoicedate']

});
}

function get_customer_sales(task, customer_id) {
var date1 = new Date(new Date().setYear(new Date().getFullYear() - 5)),

date2 = new Date(),
invoices = task.invoices.copy();

invoices.set_fields(['customer', 'invoicedate', 'total']);
invoices.set_where({customer: customer_id, invoicedate__ge: date1, invoicedate__

→˓le: date2});
invoices.set_order_by(['invoicedate']);
invoices.open();

}

function get_sales(task) {
var sales = task.invoices.copy();

sales.open({
fields: ['customer', 'id', 'total'],
funcs: {'id': 'count', 'total': 'sum'},
group_by: ['customer'],
order_by: ['customer']

});
}

post

post()

7.1. Client side (javascript) class reference 309

Jam.py documentation Documentation

domain: client

language: javascript

class Item class

Description

Writes a modified record to the item dataset. Call post to save changes made to a record after append, insert or edit
method was called.

The post method

• checks if an item is in edit or insert state , otherwise raises exception

• triggers the on_before_post event handler if one is defined for the item

• checks if a record is valid, if not raises exception

• If an item has details , post current record in details

• add changes to an item change log

• puts the item into browse state

• triggers the on_after_post event handler if one is defined for the item.

See also

Modifying datasets

prior

prior()

domain: client

language: javascript

class Item class

Description

Call prior to position the cursor on the previous record in the item dataset and make it the active record. last posts
any changes to the active record.

See also

Dataset

Navigating datasets

310 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

record_count

record_count()

domain: client

language: javascript

class Item class

Description

Call record_count to get the total number of records ownered by the item’s dataset.

Example

item.open()
if (item.record_count()) {

// some code
}

See also

Dataset

open

refresh_page

refresh_page(callback, async)

domain: client

language: javascript

class Item class

Description

Call refresh_page to send to the server a request to get current data of the current page and refresh existing visual
controls.

The refresh_page method can have the following parameters:

• callback: if the parameter is not present, the request is sent to the server synchronously, otherwise, the
request is executed asynchronously and after that the callback is executed

• async: if its value is true, and callback parameter is missing, the request is executed asynchronously

7.1. Client side (javascript) class reference 311

Jam.py documentation Documentation

refresh_record

refresh_record(options, callback, async)

domain: client

language: javascript

class Item class

Description

Call refresh_record to send to the server a request to get current data of the current record and refresh existing
visual controls.

The refresh_record method can have the following parameters:

• callback: if the parameter is not present, the request is sent to the server synchronously, otherwise, the
request is executed asynchronously and after that the callback is executed

• async: if its value is true, and callback parameter is missing, the request is executed asynchronously

• options - an object that can have an attribute details - a list of item_names of details the item. These
details are refreshed too.

The order of the parameters does not matter

search

search(field_name, value, search_type, callback)

domain: client

language: javascript

class Item class

Description

Call search to send to the server a request to generate and execute an sql query to get all records which satisfy the
search condition for the field. The query will also satisfy currently set filteres or where condition for an item. The
existing visual controls will be update with the returned dataset.

Parameters:

• field_name - name of the field

• value - value of the condition

• search_type - type of search as a string, see Filter symbol in Filtering records

• callback - a callback function that will be executed after search is executed

See also

Dataset

Filtering records

312 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

select_records

select_records(field_name, all_records)

domain: client

language: javascript

class Item class

Description

Use the select_records method to add records to an item by selecting them from the lookup item of a field.

For example, this method is used in the Demo application to add tracks to an invoice by selecting them from Tracks
catalog.

Parameters:

• The field_name parameter is a field name of a lookup field of the item

• If the all_records parameter is set to true, all selected records are added, otherwise the method omits
existing records (they were selected earlier).

Example

function on_view_form_created(item) {
var btn = item.add_view_button('Select', {type: 'primary'});
btn.click(function() {

item.select_records('track');
});

}

set_fields

set_fields(field_list)

domain: client

language: javascript

class Item class

Description

Use the set_fields method to define and store internally the fields option that will be used by the open method,
when its own fields option is not specified.

After the open method executes it clears this internally stored value.

The field_list parameter is a list of field names.

7.1. Client side (javascript) class reference 313

Jam.py documentation Documentation

Example

The result of the execution of following code snippets wil be the same:

item.open({fields: ['id', 'invoicedate']});

item.set_fields(['id', 'invoicedate']);
item.open();

See also

Dataset

open

set_order_by

set_order_by(field_list)

domain: client

language: javascript

class Item class

Description

Use the set_order_by method to define and store internally the order_by option that will be used by the open
method, when its own order_by option is not specified. The open method clears internally stored parameter value.

The field_list parameter is a list of field names. If there is a sign ‘-’ before a field name, then on this field records
will be sorted in decreasing order.

Example

The result of the execution of following code snippets wil be the same:

item.open({order_by: ['-invoicedate']});

item.set_order_by(['-invoicedate']);
item.open();

See also

Dataset

open

314 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

set_where

set_where(where)

domain: client

language: javascript

class Item class

Description

Use the set_where method to define and store internally the where option that will be used by the open method,
when its own where option is not specified. The open method clears internally stored parameter value.

The where parameter is an object of key-value pairs, where keys are field names, that are followed, after double
underscore, by a filtering symbols (see Filtering records).

Example

The result of the execution of following code snippets wil be the same:

item.open({where: {id: 100}});

item.set_where({id: 100});
item.open();

See also

Dataset

open

show_history

show_history()

domain: client

language: javascript

class Item class

Description

Class show_history method of am item to open a dialog displaying history of changes of the selected record

See also

Saving the history of changes made by users

7.1. Client side (javascript) class reference 315

Jam.py documentation Documentation

update_controls

update_controls()

domain: client

language: javascript

class Item class

Description

Call update_controls to tell associated controls to redraw to reflect current data.

See also

Data-aware controls

disable_controls

enable_controls

view

view(container)

domain: client

language: javascript

class Item class

Description

Use view method to create a view form of the item.

The method check if the javascript modules of the item and its owner are loaded, and if not (the Dynamic JS modules
loading parameter of the project is set) then loads them.

If container parameter (Jquery object of the DOM element) is specified the view form html template is inserted in
the container.

If the init_tabs method of the task is called for this conainer the tab is created for this form.

After that it calls the create_view_form method

Example

In the following code the view for of the Tasks journal is created in the on_page_loaded event handler:

function on_page_loaded(task) {

$("#title").html(task.item_caption);
if (task.safe_mode) {

(continues on next page)

316 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

(continued from previous page)

$("#user-info").text(task.user_info.role_name + ' ' + task.user_info.user_
→˓name);

$('#log-out')
.show()
.click(function(e) {

e.preventDefault();
task.logout();

});
}

task.init_tabs($("#content"));
task.tasks.view($("#content"));

$(window).on('resize', function() {
resize(task);

});
}

See also

Forms

view_form

view_options

create_view_form

close_view_form

Events

on_after_append

on_after_append(item)

domain: client

language: javascript

class Item class

Description

Occurs after an application inserts or appends a record.

The item parameter is an item that triggered the event.

Write an on_after_append event handler to take specific action immediately after an application inserts or appends a
record in an item. on_after_append is called by insert or append method.

See also

Modifying datasets

7.1. Client side (javascript) class reference 317

Jam.py documentation Documentation

on_after_apply

on_after_apply(item)

domain: client

language: javascript

class Item class

Description

Occurs after an application saves the change log to the project database.

The item parameter is an item that triggered the event.

Write an on_after_apply event handler to take specific action immediately after an application saves data changes
to the project database.

On_after_apply is triggered by apply method.

See also

Modifying datasets

on_after_cancel

on_after_cancel(item)

domain: client

language: javascript

class Item class

Description

Occurs after an application cancels modifications made to the item dataset.

The item parameter is an item that triggered the event.

Write an on_after_cancel event handler to take specific action immediately after an application cancels modifications
made to the item dataset.

See also

Modifying datasets

318 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

on_after_delete

on_after_delete(item)

domain: client

language: javascript

class Item class

Description

Occurs after an application deletes a record.

The item parameter is an item that triggered the event.

Write an on_after_delete event handler to take specific action immediately after an application deletes the active record
in an item. on_after_delete is called by delete after it deletes the record, and repositions the cursor on the record prior
to the one just deleted.

See also

Modifying datasets

on_after_edit

on_after_edit(item)

domain: client

language: javascript

class Item class

Description

Occurs after an application starts editing a record.

The item parameter is an item that triggered the event.

Write an on_after_delete event handler to take specific action immediately after an application starts editing a record.
on_after_edit is called by edit.

See also

Modifying datasets

on_after_open

on_after_open(item)

domain: client

language: javascript

7.1. Client side (javascript) class reference 319

Jam.py documentation Documentation

class Item class

Description

Occurs after an application receives a response from the server for obtaining a dataset.

The item parameter is an item that triggered the event.

Write an on_after_open event handler to take specific action immediately after an application obtains an dataset
from the server. on_after_open is called by open method.

See also

Dataset

on_after_post

on_after_post(item)

domain: client

language: javascript

class Item class

Description

Occurs after an application posts a record to the item dataset.

The item parameter is an item that triggered the event.

Write an on_after_post event handler to take specific action immediately after an application posts a record in the item
dataset. on_after_post is called by post method.

See also

Modifying datasets

on_after_scroll

on_after_scroll(item)

domain: client

language: javascript

class Item class

320 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

Occurs after an application scrolls from one record to another.

The item parameter is an item that triggered the event.

Write an on_after_scroll event handler to take specific action immediately after an application scrolls to another record
as a result of a call to the first, last, next, prior, and locate methods. on_after_scroll is called after all other events
triggered by these methods and any other methods that switch from record to record in the item dataset.

Example

The following code is used in the Demo project to asynchronously open invoice_table detail dataset after the Invoice
journal record has changed:

var ScrollTimeOut;

function on_after_scroll(item) {
clearTimeout(ScrollTimeOut);
ScrollTimeOut = setTimeout(

function() {
item.invoice_table.open(function() {});

},
100

);
}

See also

Navigating datasets

on_before_scroll

on_before_append

on_before_append(item)

domain: client

language: javascript

class Item class

Description

Occurs before an application inserts or appends a record.

The item parameter is an item that triggered the event.

Write an on_before_append event handler to take specific action immediately before an application inserts or appends
a record in an item. on_before_append is called by insert or append method.

7.1. Client side (javascript) class reference 321

Jam.py documentation Documentation

See also

Modifying datasets

on_before_apply

on_before_apply(item, params)

domain: client

language: javascript

class Item class

Description

Occurs before an application saves dataset changes to the project database.

The item parameter is an item that triggered the event.

The params parameter is an object that has been passed to the apply method or an empty object if this object is
undefined. This object is passed to the server and can be used in the on_apply event handler to perform some actions
when saving changes to the database.

Write an on_before_apply event handler to take specific action immediately before an application saves the change
log to the project database.

on_before_apply is triggered by apply method.

See also

Modifying datasets

on_before_cancel

on_before_cancel(item)

domain: client

language: javascript

class Item class

Description

Occurs before an application cancels modifications made to the item dataset.

The item parameter is an item that triggered the event.

Write an on_before_cancel event handler to take specific action immediately before an application cancels modifica-
tions made to the item dataset.

322 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Modifying datasets

on_before_delete

on_before_delete(item)

domain: client

language: javascript

class Item class

Description

Occurs before an application deletes a record.

The item parameter is an item that triggered the event.

Write an on_before_delete event handler to take specific action immediately before an application deletes the active
record in an item. on_before_delete is called by delete method before it deletes the record.

See also

Modifying datasets

on_before_edit

on_before_edit(item)

domain: client

language: javascript

class Item class

Description

Occurs before an application enables editing of the active record.

The item parameter an the item that triggered the event.

Write an on_before_edit event handler to take specific action immediately before an application enables editing of the
active record in an item dataset. on_before_edit is called by edit method.

See also

Modifying datasets

7.1. Client side (javascript) class reference 323

Jam.py documentation Documentation

on_before_field_changed

on_before_field_changed(field)

domain: client

language: javascript

class Item class

Description

Write an on_before_field_changed event handler to implement any special processing before field’s data has
been changed.

The field parameter is the field whose data is about to be changed. To get the item that owns the field, use the owner
attribute of the field.

Before triggering this event handler the application assigns the new value that is about to be set to the new_value
attribute to of the field. You can change the value of this attribute. This value will be used to change field’s data.

Example

function on_before_field_changed(field) {
if (field.field_name === 'quantity' && field.new_value < 0) {

field.new_value = 0;
}

}

See also

Fields

value

on_before_field_changed

on_before_open

on_before_open(item, params)

domain: client

language: javascript

class Item class

Description

Occurs before an application sends a request to the server for obtaining a dataset.

The item parameter is an item that triggered the event.

324 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

The params parameter is an object that has been passed to the open method or an empty object if this object is
undefined. This object is passed to the server and can be used in the on_open event handler to perform some actions
when obtaining a dataset

Write an on_before_open event handler to take specific action immediately before an application obtains an dataset
from the server.

on_before_open is called by open method.

See also

Dataset

on_before_post

on_before_post(item)

domain: client

language: javascript

class Item class

Description

Occurs before an application posts a record to the item dataset.

The item parameter is an item that triggered the event.

Write an on_before_post event handler to take specific action immediately before an application posts a record in the
item dataset. on_before_post is called by post method.

See also

Modifying datasets

on_before_scroll

on_before_scroll(item)

domain: client

language: javascript

class Item class

Description

Occurs before an application scrolls from one record to another.

The item parameter is an item that triggered the event.

7.1. Client side (javascript) class reference 325

Jam.py documentation Documentation

Write an on_before_scroll event handler to take specific action immediately before an application scrolls to another
record as a result of a call to the first, last, next, prior, and locate methods. on_before_scroll is called before all other
events triggered by these methods and any other methods that switch from record to record in the item dataset.

See also

Navigating datasets

on_after_scroll

on_detail_changed

on_detail_changed(item, detail)

domain: client

language: javascript

class Item class

Description

Occurs after changes to detail record has been posted. It uses the clearTimeout and setTimeout Javascript functions so
if records have been changed in a cicle it is triggered only when last record change occurs.

The item parameter is an item that triggered the event. The detail parameter is a detail that has been changed.

Write an on_detail_changed event handler to calculate, by using calc_summary method, sums for fields of a detail and
save these values in fields of its master.

Example

function on_detail_changed(item, detail) {
var fields;
if (detail.item_name === 'invoice_table') {

fields = [
{"total": "total"},
{"tax": "tax"},
{"subtotal": "amount"}

];
item.calc_summary(detail, fields);

}
}

See also

Details calc_summary

326 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

on_edit_form_close_query

on_edit_form_close_query(item)

domain: client

language: javascript

class Item class

Description

The on_edit_form_close_query event is triggered by the close_edit_form method of the item.

The item parameter is the item that triggered the event.

See also

Forms

create_edit_form

edit_form

close_edit_form

on_edit_form_created

on_edit_form_created(item)

domain: client

language: javascript

class Item class

Description

The on_edit_form_created event is triggered by the create_edit_form method when the form has been created but not
shown yet.

The item parameter is the item that triggered the event.

See also

Forms

create_edit_form

edit_form

7.1. Client side (javascript) class reference 327

Jam.py documentation Documentation

on_edit_form_keydown

on_edit_form_keydown(item, event)

domain: client

language: javascript

class Item class

Description

The on_edit_form_keydown event is triggered when the keydown event occurs for the edit form of the item.

The item parameter is the item that triggered the event.

The event is JQuery event object.

See also

Forms

create_edit_form

edit_form

on_edit_form_keyup

on_edit_form_keyup(item, event)

domain: client

language: javascript

class Item class

Description

The on_edit_form_keyup event is triggered when the keyup event occurs for the edit form of the item.

The item parameter is the item that triggered the event.

The event is JQuery event object.

See also

Forms

create_edit_form

edit_form

328 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

on_edit_form_shown

on_edit_form_shown(item)

domain: client

language: javascript

class Item class

Description

The on_edit_form_shown event is triggered by the create_edit_form method when the form has been shown.

The item parameter is the item that triggered the event.

See also

Forms

create_edit_form

edit_form

on_field_changed

on_field_changed(field, lookup_item)

domain: client

language: javascript

class Item class

Description

Write an on_field_changed event handler to respond to any changes in the field’s data.

The field parameter is the field whose data has been changed. To get the item that owns the field, use the owner
attribute of the field.

The lookup_item parameter is not undefined when the field is a lookup field and a change has occured when a
user selected a record from a lookup item dataset.

Example

function on_field_changed(field, lookup_item) {
var item = field.owner;
if (field.field_name === 'quantity' || field.field_name === 'unitprice') {

item.owner.calc_total(item);
}
else if (field.field_name === 'track' && lookup_item) {

item.quantity.value = 1;
item.unitprice.value = lookup_item.unitprice.value;

(continues on next page)

7.1. Client side (javascript) class reference 329

Jam.py documentation Documentation

(continued from previous page)

}
}

See also

Fields

value

on_before_field_changed

on_field_get_html

on_field_get_html(field)

domain: client

language: javascript

class Item class

Description

Write an on_field_get_html event handler to specify the html that will be inserted in the table cell for the field.

If the event handler does not return a value, the application checks if the on_field_get_text event handler is defined and
it returns a value, otherwise the display_text property value will be used to display the field value in the cell.

The field parameter is the field whose display_text is processed. To get the item that owns the field, use the owner
attribute of the field.

Example

function on_field_get_html(field) {
if (field.field_name === 'total') {

if (field.value > 10) {
return '' + field.display_text + '';

}
}

}

See also

Fields

on_field_get_text

330 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

on_field_select_value

on_field_select_value(field, lookup_item)

domain: client

language: javascript

class Item class

Description

When user clicks on the button to the right of the field input or uses typeahead, the application creates a copy of the
lookup item of the field and triggers on_field_select_value event. Use on_field_select_value to
specify fields that will be displayed, set up filters for the lookup item, before it will be opened.

The field parameter is the field whose data will be selected.

The lookup_item parameter is a copy of the lookup item of the field

Example

function on_field_select_value(field, lookup_item) {
if (field.field_name === 'customer') {

lookup_item.set_where({lastname__startwith: 'B'});
lookup_item.view_options.fields = ['firstname', 'lastname', 'address', 'phone

→˓'];
}

}

See also

Fields

Lookup fields

on_field_validate

on_field_validate(field)

domain: client

language: javascript

class Item class

Description

Write an on_field_validate event handler to validate changes made to the field data.

The field parameter is the field whose data has been changed. To get the item that owns the field, use the owner
attribute of the field.

7.1. Client side (javascript) class reference 331

Jam.py documentation Documentation

The event handler must return a string if the field value is invalid. When an event handler returns a string, the applica-
tion throws an exception.

The event is triggered when the post method is called or when the user leaves the input used to edit the field value.

Example

function on_field_validate(field) {
if (field.field_name === 'sum' && field.value > 10000000) {

return 'The sum is too big.';
}

}

See also

Fields

value

How to validate field value

on_filter_changed

on_filter_changed(filter, lookup_item)

domain: client

language: javascript

class Item class

Description

Write an on_filter_changed event handler to respond to any changes in the filter’s data.

The filter parameter is the filter whose data has been changed. To get the item that owns the filter, use the owner
attribute of the filter.

See also

Filters

value

on_filter_form_close_query

on_filter_form_close_query(item)

domain: client

language: javascript

332 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

The on_filter_form_close_query event is triggered by the close_filter_form method of the item.

The item parameter is the item that triggered the event.

See also

Forms

create_filter_form

filter_form

close_filter_form

on_filter_form_created

on_filter_form_created(item)

The item parameter is the item that triggered the event.

domain: client

language: javascript

Description

The on_filter_form_created event is triggered by the create_filter_form method when the form has been created but
not shown yet.

The item parameter is the item that triggered the event.

See also

Forms

create_filter_form

filter_form

on_filter_form_shown

on_filter_form_shown(item)

The item parameter is the item that triggered the event.

domain: client

language: javascript

7.1. Client side (javascript) class reference 333

Jam.py documentation Documentation

Description

The on_filter_form_shown event is triggered by the create_filter_form method when the form has been shown.

The item parameter is the item that triggered the event.

See also

Forms

create_filter_form

filter_form

on_filter_record

on_filter_record(item)

The item parameter is the item that triggered the event.

domain: client

language: javascript

Description

Use an on_filter_record event to filter dataset records locally. It is triggered when the cursor moves to another
record and Filtered property is set to true

Write an on_filter_record event handler to specify for each record in a dataset whether it should be visible to
the application. To indicate that a record passes the filter condition, the on_filter_record event handler must
return true.

The item parameter is the item that triggered the event.

Example

function on_filter_record(item) {
if (item.type.value === 2) {

return true;
}

}

function enable_filtering(item) {
item.filtered = true;

}

function disable_filtering(item) {
item.filtered = false;

}

334 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Filtered

on_filters_applied

on_filters_applied(item)

domain: client

language: javascript

class Item class

Description

Write an on_filters_applied event handler to make special processing when filters have been applied to the
item dataset.

See also

Filters

on_field_get_text

on_field_get_text(field)

domain: client

language: javascript

class Item class

Description

Write an on_field_get_text event handler to perform custom processing for the display_text property. If the
event handler does not return a value, the application uses the display_text property value to display the field value in
the data-aware controls, otherwise the returned value will be used.

The field parameter is the field whose display_text is processed. To get the item that owns the field, use the owner
attribute of the field.

Example

function on_field_get_text(field) {
if (field.field_name === 'customer') {

return field.owner.firstname.lookup_text + ' ' + field.lookup_text;
}

}

7.1. Client side (javascript) class reference 335

Jam.py documentation Documentation

See also

Fields

on_view_form_close_query

on_view_form_close_query(item)

domain: client

language: javascript

class Item class

Description

The on_view_form_close_query event is triggered by the close_view_form method of the item.

The item parameter is the item that triggered the event.

See also

Forms

view

view_form

close_view_form

on_view_form_created

on_view_form_created(item)

domain: client

language: javascript

class Item class

Description

The on_view_form_created event is triggered by the view method when form has been created but not shown yet.

The item parameter is the item that triggered the event.

See also

Forms

view

view_form

336 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

on_view_form_keydown

on_view_form_keydown(item, event)

domain: client

language: javascript

class Item class

Description

The on_view_form_keydown event is triggered when the keydown event occurs for the view form of the item.

The item parameter is the item that triggered the event.

The event is JQuery event object.

See also

Forms

view

view_form

on_view_form_keyup

on_view_form_keyup(item, event)

domain: client

language: javascript

class Item class

Description

The on_view_form_keyup event is triggered when the keyup event occurs for the view form of the item.

The item parameter is the item that triggered the event.

The event is JQuery event object.

See also

Forms

view

view_form

7.1. Client side (javascript) class reference 337

Jam.py documentation Documentation

on_view_form_shown

on_view_form_shown(item)

domain: client

language: javascript

class Item class

Description

The on_view_form_shown event is triggered by the view method of the item when the form has been shown.

The item parameter is the item that triggered the event.

See also

Forms

view

view_form

7.1.5 Detail class

class Detail()

domain: client

language: javascript

Detail class inherits attributes, methods and events of Item class

Attrubutes

master

master

domain: client

language: javascript

class Detail class

Description

Use master attribute to get reference to the master of the detail.

See also

Details

338 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

7.1.6 Reports class

class Reports()

domain: client

language: javascript

Reports class is used to create the group object of the task tree that owns the reports of a project.

Below the events of the class are listed.

It, as well, inherits attributes and methods of its ancestor class AbstractItem class

Events

on_before_print_report

on_before_print_report(item)

domain: client

language: javascript

class Reports class

Description

The on_before_print_report event is triggered by the process_report method.

The report parameter is the report that triggered the event.

See also

Forms

Client-side report programming

process_report

on_open_report

on_open_report(report)

domain: client

language: javascript

class Reports class

Description

The on_open_report event is triggered by the process_report method.

The report parameter is the report that triggered the event.

7.1. Client side (javascript) class reference 339

Jam.py documentation Documentation

See also

Client-side report programming

process_report

on_param_form_close_query

on_param_form_close_query(item)

domain: client

language: javascript

class Reports class

Description

The on_param_form_close_query event is triggered by the close_param_form method.

The report parameter is the report that triggered the event.

See also

Forms

Client-side report programming

print

create_param_form

on_param_form_created

on_param_form_created(item)

domain: client

language: javascript

class Reports class

Description

The on_param_form_created event is triggered by the create_param_form method, that, usually, is called by
then print method.

The report parameter is the report that triggered the event.

340 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Forms

Client-side report programming

print

create_param_form

on_param_form_shown

on_param_form_shown(item)

domain: client

language: javascript

class Reports class

Description

The on_param_form_shown event is triggered by the create_param_form method, that, usually, is called by then
print method.

See also

Forms

Client-side report programming

print

create_param_form

7.1.7 Report class

class Report()

domain: client

language: javascript

Report class inherits

Below the attributes, methods and events of the class are listed.

It, as well, inherits attributes and methods of its ancestor class AbstractItem class

Attrubutes

extension

extension

7.1. Client side (javascript) class reference 341

Jam.py documentation Documentation

domain: client

language: javascript

class Report class

Description

Use extension attribute to specify a report type. The server, based on the report template, first generates ods file.
And if report extention is other that ods performs convertion using the LibreOffice.

The attribute value can be any extension that LibreOffice supports convertion to.

Example

function on_before_print_report(report) {
report.extension = 'html';

}

See also

Client-side report programming

Server-side report programming

print

create_param_form

on_before_print_report

param_form

param_form

domain: client

language: javascript

class Report class

Description

Use param_form attribute to get access to a Jquery object representing the param form of the report.

It is created by the create_param_form method, that, usually, is called by then print method.

The close_param_form method sets the param_form value to undefined.

Example

342 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

function on_param_form_created(report) {
report.create_param_inputs(report.param_form.find(".edit-body"));
report.param_form.find("#cancel-btn").on('click.task', function() {

report.close_param_form();
});
report.param_form.find("#ok-btn").on('click.task', function() {

report.process_report()
});

}

See also

Forms

print

create_param_form

close_param_form

param_options

param_options

domain: client

language: javascript

class Report class

Description

Use the param_options attribute to specify parameters of the modal param form.

param_options is an object that has the following attributes:

• width - the width of the modal form, the default value is 560 px,

• title - the title of the modal form, the default value is the value of a report_caption attribute,

• close_button - if true, the close button will be created in the upper-right corner of the form, the default
value is true,

• close_caption - if true and close_button is true, will display ‘Close - [Esc]’ near the button

• close_on_escape - if true, pressing on the Escape key will trigger the close_param_form method.

• close_focusout - if true, the close_param_form method will be called when a form loses focus

• template_class - if specified, the div with this class will be searched in the task templates attribute and
used as a form html template when creating a form

Example

7.1. Client side (javascript) class reference 343

Jam.py documentation Documentation

function on_param_form_created(report) {
report.param_options.width = 800;
report.param_options.close_button = false;
report.param_options.close_on_escape = false;

}

See also

Forms

print

create_param_form

close_param_form

Mehods

close_param_form

close_param_form()

domain: client

language: javascript

class Report class

Description

Use close_param_form method to close the param form of the report.

The close_param_form method triggers the on_param_form_close_query event handler of the report, if one is
defined. If the event handler is defined and

• returns true - the form is destroyed, the report’s param_form atrribute is set to undefined and the methods exits

• return false - the operation is aborted and the methods exits,

If it don’t return a value (undefined) the method triggers the on_param_form_close_query of the group that owners
the report, if one is defined for the group. If this event handler is defined and

• returns true - the form is destroyed, the report’s param_form atrribute is set to undefined and the methods exits

• return false - the operation is aborted and the methods exits,

If it don’t return a value (undefined) the method triggers the on_param_form_close_query of the task. If this event
handler is defined and

• returns true - the form is destroyed, the report’s param_form atrribute is set to undefined and the methods exits

• return false - the operation is aborted and the methods exits,

If no event handler is defined or none of these event handlers return false, the form is destroyed and the report’s
param_form atrribute is set to undefined.

344 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Forms

Client-side report programming

print

create_param_form

create_param_form()

domain: client

language: javascript

class Report class

Description

The create_param_form method is called by the print method to create a form to set report parameters before
sending a request to the server by the process_report method.

The method checks if javascript modules of the report and its owner are loaded, and if not (the Dynamic JS modules
loading parameter is set) then loads them.

Then it searches for the report html template in the task templates attribute (See Forms) and creates a clone of the
template and assigns it to the report param_form attribute.

Creates a form and appends the html to it.

Triggers the on_param_form_created of the task.

Triggers the on_param_form_created of the report group, if one is defined.

Triggers the on_param_form_created of the report, if one is defined.

Shows the form. Before showing the form the method applies options specidied in the param_options attribute.

Triggers the on_param_form_shown of the task.

Triggers the on_param_form_created of the report group, if one is defined.

Triggers the on_param_form_shown of the report, if one is defined.

See also

Forms

Client-side report programming

print

create_param_inputs

create_param_inputs(container, options)

7.1. Client side (javascript) class reference 345

Jam.py documentation Documentation

domain: client

language: javascript

Description

Use create_param_inputs to create data-aware visual controls (inputs, cheboxes) for editing of report parame-
ters.

This method is usually used in on_param_form_created events triggered by create_param_form method, that,
usually, is called by then print method.

The following parameters are passed to the method:

• container - a JQuery object that will contain visual controls, if container length is 0 (no container), the
method returns.

• options - options that specify how controls are displayed

The options parameter is an object that may have following attributes:

• params - a list of param names. If specified, a visual control will be created for each param whose name
is in this list, if not specified (the default) then control will be created for all visible params specified in the
Application builder

• col_count - the number of columns that will be created for visual controls, the default value is 1

• label_on_top: the default value is false. If this value is false, the labels are placed to the left of controls,
otherwise the are created above the controls

• tabindex - if tabindex is specified, it will the tabindex of the first visual control, tabindex of all subsequent
controls will be increased by 1.

• autocomplete - the default value is false. If this attribute is set to true, the autocomplete attribute of controls
is set to “on”

Before creating controls the application empties the container.

Example

function on_param_form_created(item) {
item.create_param_inputs(item.param_form.find(".edit-body"));
item.param_form.find("#cancel-btn").on('click.task', function() {

item.close_param_form()
});
item.param_form.find("#ok-btn").on('click.task', function() {

item.process_report()
});

}

See also

create_param_form

param_form

param_options

346 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

print

print(create_form)

domain: client

language: javascript

class Report class

Description

Use print to print the report.

If create_form parameter is omitted or equals true, the method calls the create_param_form method to create a
form based on the html template defined in the index.html file.

If create_form parameter is set to false and the report has no visible parameters, it calls process_report to send
request to server to generate the report, otherwise it calls create_param_form method.

See also

Forms

Report parameters

Client-side report programming

create_param_form

process_report

process_report

process_report()

domain: client

language: javascript

class Report class

Description

The process_report method sends the report to the server to generate its content and accepts the report file that the
server returns to the client and opens or saves it.

It is called by the print method direclly, if its create_form parameter equals false and there are no visible parame-
ters. If there are visible parameters, the print method creates a form to specify parameter values and the form should
call it (for example, by some button onclick event).

The checks if parameter values are valid and the triggers the following events:

• on_before_print_report event handler of the report group

• on_before_print_report event handler of the report

7.1. Client side (javascript) class reference 347

Jam.py documentation Documentation

In this event handlers developer can define some common (report group event handler) or specific (report event handler)
attributes of the report.

After that the process_report method sends asynchronous request to the server to generate a report content. (see
Server-side report programming).

The server returns to the method an url to a file with the generated report content.

The method then checks if the on_open_report event handler of the report group is defined. If this events handler if
defined calls it, otherwise checks the on_open_report of the report. If it is defined then calls it.

If none of this events are defined, it (depending on the report extension attribute) opens the report in the browser or
saves it to disc.

Example

In the following event handler, defined in the client module of the invoice report of the Demo application, the value of
the report id parameter is set:

function on_before_print_report(report) {
report.id.value = report.task.invoices.id.value;

}

Events

on_before_print_report

on_before_print_report(report)

domain: client

language: javascript

class Report class

Description

The on_before_print_report event is triggered by the process_report method. Use
on_before_print_report to take specific actions before sending request to the server to generate the
report.

The report parameter is the report that triggered the event.

See also

Client-side report programming

process_report

on_open_report

on_open_report(report)

domain: client

348 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

language: javascript

class Report class

Description

The on_open_report event is triggered by the process_report method.

The report parameter is the report that triggered the event.

See also

Client-side report programming

process_report

on_param_form_close_query

on_param_form_close_query(report)

domain: client

language: javascript

class Report class

Description

The on_param_form_close_query event is triggered by the close_param_form method.

The report parameter is the report that triggered the event.

See also

Forms

Client-side report programming

close_param_form

on_param_form_created

on_param_form_created(report)

domain: client

language: javascript

class Report class

7.1. Client side (javascript) class reference 349

Jam.py documentation Documentation

Description

The on_param_form_created event is triggered by the create_param_form method, that, usually, is called by
then print method.

The report parameter is the report that triggered the event.

See also

Forms

Client-side report programming

print

create_param_form

on_param_form_shown

on_param_form_shown(report)

domain: client

language: javascript

class Report class

Description

The on_param_form_shown event is triggered by the create_param_form method, that, usually, is called by then
print method.

The report parameter is the report that triggered the event.

See also

Forms

Client-side report programming

print

create_param_form

7.1.8 Field class

class Field()

domain: client

language: javascript

350 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Attrubutes and properties

display_text

display_text

domain: client

language: javascript

class Field class

Description

Represents the field’s value as a string.

Display_text property is a read-only string representation of a field’s value to display in a data-aware control. If
an on_get_field_text event handler is assigned, display_text is the value returned by this event handler. Otherwise,
display_text is the value of the lookup_text property for lookup fields , and text property, converted according to the
language locale settings, for other fields.

Display_text is the string representation of the field’s value property when it is not being edited. When the field is
being edited, the text property is used.

Example

function on_get_field_text(field) {
if (field.field_name === 'customer') {

return field.owner.firstname.lookup_text + ' ' + field.lookup_text;
}

}

See also

Fields

Lookup fields

on_get_field_text

text

lookup_text

field_caption

field_caption

domain: client

language: javascript

class Field class

7.1. Client side (javascript) class reference 351

Jam.py documentation Documentation

Description

Field_caption attribute specifies the name of the field that appears to users.

See also

Dataset

Fields

field_name

field_mask

field_mask

domain: client

language: javascript

class Field class

Description

You can use field_mask attribute to specify the name of the field that appears to

The mask allows a user to more easily enter fixed width input where you would like them to enter the data in a certain
format (dates,phone numbers, etc).

A mask is defined by a format made up of mask literals and mask definitions. Any character not in the definitions list
below is considered a mask literal. Mask literals will be automatically entered for the user as they type and will not be
able to be removed by the user.The following mask definitions are predefined:

• a - Represents an alpha character (A-Z,a-z)

• 9 - Represents a numeric character (0-9)

• * - Represents an alphanumeric character (A-Z,a-z,0-9)

Example

function on_edit_form_created(item) {
item.phone.field_mask = '999-99-99';

}

field_name

field_name

domain: client

language: javascript

class Field class

352 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

Specifies the name of the field as referenced in code. Use field_name to refer to the field in code.

See also

Dataset

Fields

field_caption

field_size

field_size

domain: client

language: javascript

class Field class

Description

Identifies the size of the text field object.

See also

Dataset

Fields

field_type

field_type

domain: client

language: javascript

class Field class

Description

Identifies the data type of the field object.

Use the field_type attribute to learn the type of the data the field contains. It is one of the following values:

• “text”,

• “integer”,

• “float”,

• “currency”,

7.1. Client side (javascript) class reference 353

Jam.py documentation Documentation

• “date”,

• “datetime”,

• “boolean”,

• “blob”

See also

Dataset

Fields

lookup_text

lookup_text

domain: client

language: javascript

class Field class

Description

Use lookup_text property to get the lookup value of the lookup field converted to string.

If the field is lookup field gives its lookup text, otherwise gives the value of the text property

See also

Fields

Lookup fields

lookup_value

text

lookup_type

lookup_type

domain: client

language: javascript

class Field class

Description

For lookup fields identifies the type of the lookup_value, otherwise returns the value of field_type attribute.

354 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Dataset

Fields

lookup_value

lookup_value

domain: client

language: javascript

class Field class

Description

Use lookup_value property to get the lookup value of the lookup field

If the field is lookup field gives its lookup value, otherwise gives the value of the value property

See also

Fields

Lookup fields

lookup_value

lookup_text

owner

owner

domain: client

language: javascript

class Field class

Description

Identifies the item to which a field object belongs.

Check the value of the owner attribute to determine the item that uses the field object to represent one of its fields.

Example

7.1. Client side (javascript) class reference 355

Jam.py documentation Documentation

function calculate(item) {

}

function on_field_changed(field, lookup_item) {
if (field.field_name === 'taxrate') {

calculate(field.owner);
}

}

See also

Dataset

Fields

raw_value

raw_value

domain: client

language: javascript

class Field class

Description

Represents the data in a field object.

Use raw_value read only property to read data directly from the item dataset. Other properties such as value and text
use convesion. So the value property converts the null value to 0 for the numeric fields.

See also

Fields

value

text

Field read_only

read_only

domain: client

language: javascript

class Field class

356 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

Determines whether the field can be modified in data-aware controls.

Set read_only to true to prevent a field from being modified in data-aware controls.

See also

Fields

required

required

required

domain: client

language: javascript

class Field class

Description

Specifies whether a not empty value for a field is required.

Use required to find out if a field requires a value or if the field can be blank. When required property is set to true,
trying to post a null value will cause an exception to be raised.

See also

Fields

read_only

text

text

domain: client

language: javascript

class Field class

Description

Use text property to get or set the text value of the field.

Getting text property value

Gets the value of the value property and converts it to text.

7.1. Client side (javascript) class reference 357

Jam.py documentation Documentation

Setting text property value

Converts the text to the type of the field and assigns its value property to this value

See also

Fields

Lookup fields

lookup_value

text

lookup_text

value

value

domain: client

language: javascript

class Field class

Description

Use value property to get or set the value of the field.

Getting value

When field data is null, the field converts it to 0, if the field_type is “integer”, “float” or “currency”, or to empty string
if field_type is “text”.

For lookup fields the value of this property is an integer that is the value of the id field of the corresponding record in
the lookup item. To get lookup value of the field use the lookup_value property.

Setting value

When a new value is assigned, the field checks if the current value is not equal to the new one. If so it

• sets its new_value attribute to this value,

• triggers the on_before_field_changed event if one is defined for the field,

• changes the field data to the new_value attribute and sets it to null,

• mark item as modified, so the is_modified method will return true

• triggers the on_field_changed event if one is defined for the field

• updates data-aware controls

358 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Example

function calc_total(item) {
item.amount.value = item.round(item.quantity.value * item.unitprice.value, 2);
item.tax.value = item.round(item.amount.value * item.owner.taxrate.value / 100,

→˓2);
item.total.value = item.amount.value + item.tax.value;

}

See also

Fields

Lookup fields

lookup_value

text

lookup_text

Mehods

download

download()

domain: client

language: javascript

class Field class

Description

Call download for fields of type FILE to download the file.

Example

function on_view_form_created(item) {
item.add_view_button('Download').click(function() {

item.attachment.download();
});

}

open

open()

7.1. Client side (javascript) class reference 359

Jam.py documentation Documentation

domain: client

language: javascript

class Field class

Description

Call open for fields of type FILE to open the url to the file by using window.open.

Example

function on_view_form_created(item) {
item.add_view_button('Open').click(function() {

item.attachment.open();
});

}

7.1.9 Filter class

class Filter()

domain: client

language: javascript

Attributes and properties

filter_caption

filter_caption

domain: client

language: javascript

class Filter class

Description

Filter_caption attribute specifies the name of the filter that appears to users.

See also

Filters

filter_name

Dataset

360 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

filter_name

filter_name

domain: client

language: javascript

class Filter class

Description

Specifies the name of the filter as referenced in code. Use filter_name to refer to the field in code.

See also

Filters

filter_caption

Dataset

owner

owner

domain: client

language: javascript

Filter class

Description

Identifies the item to which a filter object belongs.

Check the value of the owner attribute to determine the item that uses the filter object to represent one of its filters.

value

value

domain: client

language: javascript

class Filter class

Description

Use value property to get or set the value of the filter.

7.1. Client side (javascript) class reference 361

Jam.py documentation Documentation

Example

function on_view_form_created(item) {
item.filters.invoicedate1.value = new Date(new Date().setYear(new Date().

→˓getFullYear() - 1));
}

See also

Filters

visible

Dataset

visible

visible

domain: client

language: javascript

class Filter class

Description

If the value of this property is true the input control for this filter will be created by the create_filter_inputs method, if
the filters option in not specidied.

See also

Filters

value

Dataset

7.2 Server side (python) class reference

All objects of the framework represent a task tree. Bellow is classes for each kind of task tree objects:

7.2.1 App class

class App

domain: server

language: python

App class is used to create a WSGI application

Below the attributes of the class are listed.

362 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

admin

admin

domain: server

language: python

class: App class

Description

Returns a reference to the Application builder task tree

See also

Workflow

Task tree

task

task

domain: server

language: python

class: App class

Description

Returns a reference to the Project task tree

See also

Workflow

Task tree

7.2.2 AbstractItem class

class AbstractItem

domain: server

language: python

AbstractItem class is the ancestor for all item objects of the task tree

Below the attributes and methods of the class are listed.

7.2. Server side (python) class reference 363

Jam.py documentation Documentation

Attrubutes

environ

environ

domain: server

language: python

class AbstractItem class

Description

Specifies the WSGI environment dictionary of the current request from the client.

See also

Server side programming

session

ID

ID

domain: server

language: python

class AbstractItem class

Description

The ID attribute is the unique in the framework id of the item

The ID attribute is most useful when referring to the item by number rather than name. It is also used internally.

See also

Task tree

item_caption

item_caption

domain: server

language: python

class AbstractItem class

364 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

Specifies the name of the item that appears to users

See also

Task tree

item_name

item_name

domain: server

language: python

class AbstractItem class

Description

Specifies the name of the item as referenced in code.

Use item_name to refer to the item in code.

See also

Task tree

item_type

item_type

domain: server

language: python

class: AbstractItem class

Description

Specifies the type of the item.

Use the item_type attribute to get the type of the item. It can have one of the following values

• “task”,

• “items”,

• “details”,

• “reports”,

• “item”,

• “detail_item”,

7.2. Server side (python) class reference 365

Jam.py documentation Documentation

• “report”,

• “detail”

See also

Task tree

items

items

domain: server

language: python

class AbstractItem class

Description

Lists all items owned by the item.

Use items to access any of the item owned by this object.

See also

Task tree

owner

Indicates the item that owns this item.

owner

domain: server

language: python

class AbstractItem class

Description

Use owner to find the owner of an item.

See also

Task tree

366 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

session

session

domain: server

language: python

class AbstractItem class

Description

Use the session property to get access to session object of the current request from the client.

The session is a dictionary that has the following items:

• ip - ip address of the user

• user_info - dictionary containing information about the user

– user_id - id identifying the user

– user_name - name of the user

– role_id - id of user role

– role_name - name of user role

Example

def on_open(item, params):
user_id = item.session['user_info']['user_id']
if user_id:

params['__filters'].append(['user_id', item.task.consts.FILTER_EQ, user_id])

def on_apply(item, delta, params):
user_id = item.session['user_info']['user_id']
if user_id:

for d in delta:
d.edit()
d.user_id.value = user_id
d.post()

See also

Server side programming

environ

task

task

7.2. Server side (python) class reference 367

Jam.py documentation Documentation

domain: server

language: python

class AbstractItem class

Description

Indicates the root of the task tree that owns this item.

Use task attribute to find the root of the task tree of which the item is a member.

See also

Task tree

Mehods

can_view

can_view(self)

domain: server

language: python

class AbstractItem class

Description

Use the can_view method to determine whether a user of the current session can view records if a data item or print
a report.

See also

Roles

session

can_create

can_edit

can_delete

item_by_ID

item_by_ID(self, ID)

domain: server

language: python

class AbstractItem class

368 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

item_by_ID searches among all items of the project task tree, starting with the current item, for an item whose ID
attribute is equal to the ID parameter.

See also

Task tree

7.2.3 Task class

class Task

domain: server

language: python

Task class is used to create the root of the Task tree of the project.

Below the attributes, methods and events of the class are listed.

It, as well, inherits attributes and methods of its ancestor class AbstractItem class

Attrubutes

app

app

domain: server

language: python

class: Task class

Description

Returns a reference to WSGI application object.

The Framework uses Werkzeug WSGI Utility Library.

See also

Workflow

work_dir

work_dir

domain: server

language: python

class: Task class

7.2. Server side (python) class reference 369

http://werkzeug.pocoo.org/

Jam.py documentation Documentation

Description

Returns the real absolute path to the project directory.

See also

Workflow

Mehods

check_password_hash

check_password_hash(self, pwhash, password)

domain: server

language: python

class Task class

Description

Use check_password_hash to check a password against a given salted and hashed password value.

The method is wrapper over Werkzeug check_password_hash function: https://werkzeug.palletsprojects.com/en/0.
15.x/utils/

Example

def on_login(task, login, password, ip, session_uuid):
users = task.users.copy(handlers=False)
users.set_where(login=login)
users.open()
for u in users:

if task.check_password_hash(u.password_hash.value, password):
return {

'user_id': users.id.value,
'user_name': users.name.value,
'role_id': users.role.value,
'role_name': users.role.display_text

}

See also

generate_password_hash

connect

connect(self)

370 Chapter 7. Jam.py class reference

https://werkzeug.palletsprojects.com/en/0.15.x/utils/
https://werkzeug.palletsprojects.com/en/0.15.x/utils/

Jam.py documentation Documentation

domain: server

language: python

class Task class

Description

Use connect to procure a connection from the SQLAlchemy connection pool.

The return value of this method is a DBAPI connection.

A developer must return a connection to the connection poll when it is no longer needed by calling close method of
the connection.

Example

def delete_rec(item, item_id):
conection = item.task.connect()
try:
cursor = conection.cursor()
cursor.execute('delete from %s where id=%s' % (item.table_name, item_id))
conection.commit()

finally:
conection.close()

copy_database

copy_database(self, dbtype, database=None, user=None, password=None, host=None, port=None, en-
coding=None, server=None)

domain: server

language: python

class Task class

Description

Use copy_database to copy database data when migrating to another database.

See How to migrate to another database

Example

in the following code when the project task tree is created the application copies the data from the demo.sqlite database
to the project database:

from jam.db.db_modules import SQLITE

def on_created(task):
task.copy_database(SQLITE, '/home/work/demo/demo.sqlite')

7.2. Server side (python) class reference 371

Jam.py documentation Documentation

create_connection

create_connection(self)

domain: server

language: python

class Task class

Description

Use create_connection to create a connection to the project database.

The method returns a new connection.

A developer must close a connection after it is no longer needed.

See also

execute

select

create_connection_ex

create_connection_ex(self, db_module, database, user=None, password=None, host=None,
port=None, encoding=None, server=None)

domain: server

language: python

class Task class

Description

Use create_connection_ex to create a connection to other databases.

The method returns a new connection.

A developer must close a connection after it is no longer needed.

See also

How can I use data from other database tables

execute

execute(self, sql)

372 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

domain: server

language: python

class Task class

Description

Use execute to execute an SQL query (except SELECT queries) using multiprocessing connection pool. For SE-
LECT queries use the select method.

The sql parameter can be a query string, a list of query strings, a list of lists and so on.

All queries are executed in one transaction and if execution succeeds the COMMIT command is called, otherwise
ROLLBACK command is executed.

Example

sql = []
for i in ids:

sql.append('UPDATE DEMO_CUSTOMERS SET QUANTITY=2 WHERE ID=%s' % i)
item.task.execute(sql)

See also

select

generate_password_hash

generate_password_hash(self, password, method=’pbkdf2:sha256’, salt_length=8)

domain: server

language: python

class Task class

Description

This method hash a password with the given method and salt with a string of the given length. The format of the string
returned includes the method that was used so that check_password_hash can check the hash.

The method is wrapper over Werkzeug generate_password_hash function: https://werkzeug.palletsprojects.com/en/
0.15.x/utils/

Example

7.2. Server side (python) class reference 373

https://werkzeug.palletsprojects.com/en/0.15.x/utils/
https://werkzeug.palletsprojects.com/en/0.15.x/utils/

Jam.py documentation Documentation

def on_apply(item, delta, params, connection):
for d in delta:

if d.password.value:
d.edit();
d.password_hash.value = delta.task.generate_password_hash(d.password.

→˓value)
d.password.value = None
d.post();

See also

check_password_hash

lock

lock(self, lock_name, timeout=-1)

domain: server

language: python

class Task class

Description

Use lock to implement a platform independent file lock in Python, which provides a simple way of inter-process
communication.

This method is a wrapper around Python filelock library: https://github.com/benediktschmitt/py-filelock

Once lock has been acquired, subsequent attempts to acquire it block execution, until it is released.

lock_name parameter is the name of the lock. It must be unic in the application. The filelock library creates a file in
the locks folder with this name and .lock extention that it uses to implement the lock.

timeout parameter - if the lock cannot be acquired within timeout seconds, a Timeout exception is raised.

Example

The code

def calculate(item):
lock = item.task.lock('calculation'):
lock.acquire()
try:

#some code
finally:

lock.release()

is equivalent to

def calculate(item):
with item.task.lock('calculation'):

#some code

374 Chapter 7. Jam.py class reference

https://github.com/benediktschmitt/py-filelock

Jam.py documentation Documentation

The example with timeout:

from jam.third_party.filelock import Timeout

def calculate(item):
try
with item.task.lock('calculation', timeout=10):

#some code
except Timeout:
print("Another instance of this application currently holds the lock.")

In the following example when saving invoice the app calculates sold tracks. Before doing this it acquires a lock:

def on_apply(item, delta, params):
with item.task.lock('invoice_saved'):

tracks_sql = []
delta.update_deleted()
for d in delta:

for t in d.invoice_table:
if t.rec_inserted():

sql = "UPDATE DEMO_TRACKS SET TRACKS_SOLD = COALESCE(TRACKS_SOLD,
→˓0) + \

%s WHERE ID = %s" % \
(t.quantity.value, t.track.value)

elif t.rec_deleted():
sql = "UPDATE DEMO_TRACKS SET TRACKS_SOLD = COALESCE(TRACKS_SOLD,

→˓0) - \
(SELECT QUANTITY FROM DEMO_INVOICE_TABLE WHERE ID=%s) WHERE ID =

→˓%s" % \
(t.id.value, t.track.value)

elif t.rec_modified():
sql = "UPDATE DEMO_TRACKS SET TRACKS_SOLD = COALESCE(TRACKS_SOLD,

→˓0) - \
(SELECT QUANTITY FROM DEMO_INVOICE_TABLE WHERE ID=%s) + %s WHERE

→˓ID = %s" % \
(t.id.value, t.quantity.value, t.track.value)

tracks_sql.append(sql)
sql = delta.apply_sql()
return item.task.execute(tracks_sql + [sql])

select

select(self, sql)

domain: server

language: python

class Task class

Description

Use select to execute select SELECT SQL query. To execute the query the connection pool is used.

The sql parameter is a query to execute.

The method returns a list of records.

7.2. Server side (python) class reference 375

Jam.py documentation Documentation

Example

recs = item.task.execute_select("SELECT * FROM DEMO_CUSTOMERS WHERE ID=41")
for r in rec:

print(r)

See also

execute

Events

on_created

on_created(task)

domain: server

language: python

class Task class

Description

Use on_created to initialize the application on the server side.

The event is triggered when the project task tree has just been created. See Workflow

The task parameter is a reference to the task tree

Note: The execution time of the code in this handler must be very short because of detrimental effects to the end
user’s experience.

Example

def on_created(task):
some code

See also

Workflow

Task tree

376 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

on_ext_request

on_ext_request(task, request, params)

domain: server

language: python

class Task class

Description

Use on_ext_request to send a request to the server for processing.

The task parameter is a reference to the task tree The request is a string that must starts with ‘/ext’ There could
be a list of parameters.

Example

The following application will send every 60 seconds a request to the server of Demo application

#!/usr/bin/env python

try:
For Python 3.0 and later
from urllib.request import urlopen

except ImportError:
Fall back to Python 2's urllib2
from urllib2 import urlopen

import json
import time

def send(url, request, params):
a = urlopen(url + '/' + request, data=str.encode(json.dumps(params)))
r = json.loads(a.read().decode())
return r['result']['data']

if __name__ == '__main__':
url = 'http://127.0.0.1:8080/ext'
while True:

result = send(url, 'get_sum', [1, 2, 3])
print(result)
time.sleep(60)

The server will process this request and return the sum of parameters. The on_ext_request must be declared in
task server module:

def on_ext_request(task, request, params):
#print request, params
reqs = request.split('/')
if reqs[2] == 'get_sum':

return params[0] + params[1] + params[2]

7.2. Server side (python) class reference 377

Jam.py documentation Documentation

on_login

on_login(task, form_data, info)

domain: server

language: python

class Task class

Description

Use on_login to override default login procedure using Application Builder Users table.

task parameter is a reference to the task tree.

form_data is a dictionary containing the values that the user entered in the inputs in the login form. The keys of the
dictionary are name attributes of the inputs.

info parameter is a dictionary with the following attributes:

• ip is the ip address of the request

• session_uuid is uuid of the session that will be created.

The event handler must return the dictionary with the following attributes:

• user_id - the unique id of the user

• user_name - user name

• role_id - ID of the role defined in the Roles

• role_name - role name

The login form is located in the index.html file. You can add your own custom inputs and get their values using
form_data parameter

<form id="login-form" target="dummy" class="form-horizontal" data-caption="Log in">
<div class="control-group">

<label class="control-label" for="input-login">Login</label>
<div class="controls">

<input type="text" id="input-login" name="login" tabindex="1" placeholder=
→˓"login">

</div>
</div>
<div class="control-group">

<label class="control-label" for="input-password">Password</label>
<div class="controls">

<input type="password" id="input-password" name="password" tabindex="2"
placeholder="password" autocomplete="on">

</div>
</div>
<div class="form-footer">

<input type="submit" class="btn expanded-btn pull-right" id="login-btn" value=
→˓"OK" tabindex="3">

</div>
</form>

378 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Example

In this example user information is stored in the table of the Users item in the project database:

def on_login(task, form_data, info):
users = task.users.copy(handlers=False)
users.set_where(login=form_data['login'])
users.open()
if users.rec_count == 1:

if task.check_password_hash(users.password_hash.value, form_data['password']):
return {

'user_id': users.id.value,
'user_name': users.name.value,
'role_id': users.role.value,
'role_name': users.role.display_text

}

See also

session

environ

generate_password_hash

check_password_hash

7.2.4 Group class

class Group

domain: server

language: python

Group class is used to create group objects of the task tree

It, as well, inherits attributes and methods of its ancestor class AbstractItem class

7.2.5 Item class

class Item

domain: server

language: python

Item class is used to create item objects of the task tree that may have an associated database table.

Below the attributes, methods and events of the class are listed.

It, as well, inherits attributes and methods of its ancestor class AbstractItem class

7.2. Server side (python) class reference 379

Jam.py documentation Documentation

Attrubutes and properties

active

active

domain: server

language: python

class Item class

Description

Specifies whether or not an item dataset is open.

Use active read only property to determine whether an item dataset is open.

The open method changes the value of active to true. The close method sets it to false.

When the dataset is open its records can be navigated and its data can be modified and the changes saved in the item
database table.

See also

Dataset

Navigating datasets

Modifying datasets

details

details

domain: server

language: python

class Item class

Description

Lists all detail objects of the item.

See also

Details

380 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

fields

fields

domain: server

language: python

class Item class

Description

Lists all field objects of the item dataset.

Example

def customer_fields(customers):
customers.open(limit=1)
for f in customers.fields:

print f.field_caption, f.display_text

See also

Fields

Field class

filters

filters

domain: server

language: python

class Item class

Description

Lists all filter objects of the item dataset.

Example

def invoices_filters(invoices):
for f in invoices.filters:

print f.filter_name, f.value

7.2. Server side (python) class reference 381

Jam.py documentation Documentation

See also

Filters

Filter class

item_state

item_state

domain: server

language: python

class Item class

Description

Examine item_state to determine the current operating mode of the item. Item_state determines what can be done
with data in an item dataset, such as editing existing records or inserting new ones. The item_state constantly
changes as an application processes data.

Opening a item changes state from inactive to browse. An application can call edit to put an item into edit state, or
call insert or append to put an item into insert state.

Posting or canceling edits, insertions, or deletions, changes item_state from its current state to browse. Closing a
dataset changes its state to inactive.

To check item_state value use the following methods:

• is_new - indicates whether the item is in insert state

• is_edited - indicates whether the item is in edit state

• is_changing - indicates whether the item is in edit or insert state

item_state value can be:

• 0 - inactive state,

• 1 - browse state,

• 2 - insert state,

• 3 - edit state,

• 4 - delete state

item task attribute have consts object that defines following attributes:

• “STATE_INACTIVE”: 0,

• “STATE_BROWSE”: 1,

• “STATE_INSERT”: 2,

• “STATE_EDIT”: 3,

• “STATE_DELETE”: 4

so if the item is in edit state can be checked the following way:

382 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

item.item_state == 2

or:

item.item_state == item.task.consts.STATE_INSERT

or:

item.is_new()

See also

Modifying datasets

log_changes

log_changes

domain: server

language: python

class Item class

Description

Indicates whether to log data changes.

Use log_changes to control whether or not changes made to the data in an item dataset are recorded. When
log_changes is true (the default), all changes are recorded. They can later be applied to an application server by
calling the apply method. When log_changes is false, data changes are not recorded and cannot be applied to
an application server.

See also

Modifying datasets

apply

rec_no

rec_no

domain: server

language: python

class Item class

7.2. Server side (python) class reference 383

Jam.py documentation Documentation

Description

Examine the rec_no property to determine the record number of the current record in the item dataset.

rec_no can be set to a specific record number to position the cursor on that record.

See also

Dataset

Navigating datasets

table_name

table_name

domain: server

language: python

class Item class

Description

Read this property to get the name of the corresponding table in the project database.

virtual_table

virtual_table

domain: server

language: python

class Item class

Description

Use the read-only virtual_table property to find out if the item has a corresponding table in the project database.

If virtual_table is True there is no corresponding table in the project database. You can use these items to
work with in-memory dataset or use its modules to write code. Calling the open method creates an empty data set, and
calling the apply method does nothing.

Mehods

append

append(self)

384 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

domain: server

language: python

class Item class

Description

Open a new, empty record at the end of the dataset.

After a call to append, an application can enable users to enter data in the fields of the record, and can then post those
changes to the item dataset using post method, and then apply them to the item database table, using apply method.

The append method

• checks if item dataset is active , otherwise raises exception

• if the item is a detail , checks if the master item is in edit or insert state , otherwise raises exception

• if the item is not a detail checks if it is in browse state , otherwise raises exception

• open a new, empty record at the end of the dataset

• puts the item into insert state

See also

Modifying datasets

apply

apply(self, connection=None, params=None, safe=False):

domain: server

language: python

class Item class

Description

Writes all updated, inserted, and deleted records from the item dataset to the database.

The apply method

• checks whether the item is a detail, and if it is, returns (the master saves the details changes)

• checks whether the item is in edit or insert state , and if so, posts the record

• checks if the change log has changes, and if not, returns

• triggers the on_before_apply event handler if one is defined for the item

• if connection parameter is None the task connect method is called to get a connection from task connection
pool

• if on_apply event handler of the task is defined, executes it

• if on_apply event handler is defined for the item, executes it

7.2. Server side (python) class reference 385

Jam.py documentation Documentation

• generates and executes SQL query to write changes to the database using the connection

• if connection parameter was not specified, commits changes to the database and returns connection to the
connection pool

• after writing changes to the database, updates the change log and the item dataset - updates primary key values
of new records

• triggers the on_after_apply event handler if one is defined for the item

Parameters

• connection - if this parameter is specified the appication uses it to execute sql query that it generates (it
doesn’t commit changes and doesn’t close the connection), otherwise it procures a connection from the task
connection pool that will be returned to the pool after changes are commited.

• params - use the parameter to pass some user defined options to be used in the on_apply event handler. This
parameter must be an object of key-value pairs

• safe - if set to True, the method checks if the user that called the method has a right to create, edit or delete
records in the item’s database table (if such operation is going to be performed) and, if not, raises an exception.
The default value is False. See Roles

Examples

In the second example below, the changes are saved in one transaction.

def change_invoice_date(item, item_id):
inv = item.copy()
cust = item.task.customers.copy()
inv.set_where(id=item_id)
inv.open()
if inv.record_count():

now = datetime.datetime.now()
cust.set_where(id=inv.customer.value)
cust.open()

inv.edit()
inv.invoice_datetime.value = now
inv.post()
inv.apply()

cust.edit()
cust.last_action_date.value = now
cust.post()
cust.apply()

def change_invoice_date(item, item_id):
con = item.task.connect()
try:

inv = item.copy()
cust = item.task.customers.copy()
inv.set_where(id=item_id)
inv.open()
if inv.record_count():

now = datetime.datetime.now()

(continues on next page)

386 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

(continued from previous page)

cust.set_where(id=inv.customer.value)
cust.open()

inv.edit()
inv.invoice_datetime.value = now
inv.post()
inv.apply(con)

cust.edit()
cust.last_action_date.value = now
cust.post()
cust.apply(con)

finally:
con.commit()
con.close()

See also

Modifying datasets

bof

bof(self)

domain: server

language: python

class Item class

Description

Test bof (beginning of file) method to determine if the cursor is positioned at the first record in an item dataset.

If bof returns true, the cursor is unequivocally on the first row in the dataset. bof returns true when an application

• Opens an item dataset.

• Calls an item’s first method.

• Call an item’s prior method, and the method fails (because the cursor is already on the first row in the dataset).

bof returns false in all other cases.

Note: If both eof and bof return true, the item dataset is empty.

See also

Dataset

Navigating datasets

7.2. Server side (python) class reference 387

Jam.py documentation Documentation

can_create

can_create(self)

domain: server

language: python

class AbstractItem class

Description

Use the can_create method to determine whether a user of the current session have a right to create a new record.

Example

def send_email(item, selected, subject, mess):
if not item.can_create():

raise Exception('You are not allowed to send emails.')
#code sending email

See also

Roles

session

can_view

can_create

can_edit

can_delete

can_delete

can_delete(self)

domain: server

language: python

class AbstractItem class

Description

Use the can_delete method to determine whether a user of the current session have a right to delete a record.

388 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Roles

session

can_view

can_create

can_edit

can_edit

can_edit(self)

domain: server

language: python

class AbstractItem class

Description

Use the can_edit method to determine whether a user of the current session have a right to edit a record.

See also

Roles

session

can_view

can_create

can_delete

cancel

cancel(self)

domain: server

language: python

class Item class

Description

Call cancel to undo modifications made to one or more fields belonging to the current record, as long as those
changes are not already posted to the item dataset.

Cancel

• triggers the on_before_cancel event handler if one is defined for the item.

7.2. Server side (python) class reference 389

Jam.py documentation Documentation

• to undo modifications made to the current record and its details if the record has been edited or removes the new
record if one was appended or inserted.

• puts the item into browse state

• triggers the on_after_cancel event handler if one is defined for the item.

See also

Modifying datasets

clear_filters

clear_filters(self)

domain: server

language: python

class Item class

Description

Use clear_filters to set filter values of the item to None.

See also

Filtering records

Filters

close

close(self)

domain: server

language: python

class Item class

Description

Call lose to close an item dataset. After dataset is closed the active property is false.

See also

Dataset

open

390 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

copy

copy(self, filters=True, details=True, handlers=True)

domain: server

language: python

class Item class

Description

Use copy to create a copy of an item. The created copy is not added to the task tree and will be destroyed by Python
garbage collector when no longer needed.

All attributes of the copy object are defined as they were at the time of creating of the task tree. See Workflow

The method can have the following parameters:

• handlers - if the value of this parameter is true, all the functions and events defined in the server module of
the item will also be available in the copy. The default value is true.

• filters - if the value of this parameter is true, the filters will be created for the copy, otherwise there will
be no filters. The default value is true.

• details - if the value of this parameter is true, the details will be created for the copy, otherwise there will
be no details. The default value is true.

Example

def on_generate(report):
cust = report.task.customers.copy()
cust.open()

report.print_band('title')

for c in cust:
firstname = c.firstname.display_text
lastname = c.lastname.display_text
company = c.company.display_text
country = c.country.display_text
address = c.address.display_text
phone = c.phone.display_text
email = c.email.display_text
report.print_band('detail', locals())

See also

Task tree

Workflow

delete

delete(self)

7.2. Server side (python) class reference 391

Jam.py documentation Documentation

domain: server

language: python

class Item class

Description

Deletes the active record and positions the cursor on the next record.

The delete method

• checks if item dataset is active, otherwise raises exception

• checks if item dataset is not empty, otherwise raises exception

• if item is a detail , checks if the master item is in edit or insert state, otherwise raises exception.

• if item is not a detail , checks if it is in browse state, otherwise raises exception.

• puts the item into delete state

• deletes the active record and positions the cursor on the next record

• puts the item into browse state

See also

Modifying datasets

edit

edit(self)

domain: server

language: python

class Item class

Description

Enables editing of data in the dataset.

After a call to edit, an application can enable users to change data in the fields of the record, and can then post those
changes to the item dataset using post method, and then apply them to database using apply method.

The edit method

• checks if item dataset is active, otherwise raises exception

• checks if item dataset is not empty, otherwise raises exception

• checks whether the item dataset is already in edit state, and if so, returns

• if item is a detail , checks if the master item is in edit or insert state , otherwise raises exception

• if item is not a detail , checks if it is in browse state , otherwise raises exception

• puts the item into edit state , enabling the application or user to modify fields in the record

392 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Modifying datasets

eof

eof(self)

domain: server

language: python

class Item class

Description

Test eof (end-of-file) to determine if the cursor is positioned at the last record in an item dataset. If eof returns true,
the cursor is unequivocally on the last row in the dataset. eof returns true when an application:

• Opens an empty dataset.

• Calls an item’s last method.

• Call an item’s next method, and the method fails (because the cursor is already on the last row in the dataset).

eof returns false in all other cases.

Note: If both eof and bof return true, the item dataset is empty.

See also

Dataset

Navigating datasets

field_by_name

field_by_name(self, field_name)

domain: server

language: python

class Item class

Description

Call field_by_name to retrieve field information for a field when only its name is known.

The field_name parameter is the name of an existing field.

field_by_name returns the field object for the specified field. If the specified field does not exist,
field_by_name returns None.

7.2. Server side (python) class reference 393

Jam.py documentation Documentation

filter_by_name

filter_by_name(self, filter_name)

domain: server

language: python

class Item class

Description

Call filter_by_name to retrieve filter information for a filter when only its name is known.

The filter_name parameter is the name of an existing filter.

filter_by_name returns the filter object for the specified filter. If the specified filter does not exist,
filter_by_name returns None.

first

first(self)

domain: server

language: python

class Item class

Description

Call first to position the cursor on the first record in the item dataset and make it the active record. First posts
any changes to the active record.

See also

Dataset

Navigating datasets

insert

insert(self)

domain: server

language: python

class Item class

394 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

Inserts a new, empty record in the item dataset.

After a call to insert, an application can enable users to enter data in the fields of the record, and can then post those
changes to the item dataset using post method, and then apply them to the item database table, using apply method.

The insert method

• checks if item dataset is active , otherwise raises exception

• if the item is a detail , checks if the master item is in edit or insert state , otherwise raises exception

• if the item is not a detail checks if it is in browse state , otherwise raises exception

• inserts a new, empty record in the item dataset.

• puts the item into insert state

See also

Modifying datasets

is_changing

is_changing(self)

domain: server

language: python

class Item class

Description

Checks if an item is in edit or insert state and returns true if it is.

An application calls edit to put an item into edit state and append or insert to put an item into insert state.

See also

Modifying datasets

is_edited

is_edited(self)

domain: server

language: python

class Item class

7.2. Server side (python) class reference 395

Jam.py documentation Documentation

Description

Checks if an item is in edit state and returns true if it is.

An application calls edit to put an item into edit state.

See also

Modifying datasets

is_modified

is_modified(self)

domain: server

language: python

class Item class

Description

Checks if the current record of an item dataset has been modified during edit or insert opertaions. The method returns
false after the post method is executed.

See also

Modifying datasets

is_new

is_new(self)

domain: server

language: python

class Item class

Description

Checks if an item is in insert state and returns true if it is.

An application calls append or insert methods to put an item into insert state.

See also

Modifying datasets

396 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

last

last(self)

domain: server

language: python

class Item class

Description

Call last to position the cursor on the last record in the item dataset and make it the active record.

See also

Dataset

Navigating datasets

locate

locate(self, fields, values)

domain: server

language: python

class Item class

Description

Implements a method for searching an item dataset for a specified record and makes that record the active record.

Arguments:

• fields: a field name, or list of field names

• values: a field value of list of field values

This method locates the record where the fields specified by fields parameter have the values specified by values
parameter.

locate returns true if a record is found that matches the specified criteria and the cursor repositioned to that record.

If a matching record was not found and the cursor is not repositioned, this method returns false.

See also

Dataset

Navigating datasets

7.2. Server side (python) class reference 397

Jam.py documentation Documentation

next

next(self)

domain: server

language: python

class Item class

Description

Call next to position the cursor on the next record in the item dataset and make it the active record. Next posts any
changes to the active record.

open

open(self, options=None, expanded=None, fields=None, where=None,
order_by=None, open_empty=False, params=None, offset=None, limit=None,
funcs=None, group_by=None, safe=False)

domain: server

language: python

class Item class

Description

Call open to generate and execute a SELECT SQL query to the item database table for obtaining a dataset.

The method initializes the item fields, formulates parameters of a request, and triggers the on_before_open event
handler if one is defined for the item.

If there is a on_open event handler defined for the item, open executes this event handler and assigns a dataset to the
result, returned by it, otherwise generates a SELECT SQL query, based on parameters of the request, executes this
query and assigns the result of the execution to the dataset

After that it sets active to true, the item_state to browse mode, goes to the first record of the dataset, triggers
on_after_open, if it is defined for the item.

Parameters

You can pass options dictionary to specify parameters of the request in the same form as for the open method on
the client:

invoices.open({
'fields': ['customer', 'invoicedate', 'total'],
'where': {customer: customer_id, invoicedate__ge: date1, invoicedate__le: date2},
'order_by': ['invoicedate']

})

or pass the keyworded arguments:

398 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

invoices.open(
fields=['customer', 'invoicedate', 'total'],
where={customer: customer_id, invoicedate__ge: date1, invoicedate__le: date2},
order_by=['invoicedate']

)

• expanded - if the value of this parameter is true, the SELECT query will have JOIN clauses to get lookup
values of the lookup fields , otherwise there will be no lookup values. The default value if true.

• fields - use this parameter to specify the WHERE clause of the SELECT query. This parameter is a list of
field names. If it is omitted, the fields defined by the set_fields method will be used. If the set_fields method was
not called before the open method execution, all available fields will be used.

• where - use this parameter to specify how records will be filtered in the SQL query. This parameter is a
dictionary, whose keys are field names, that are followed, after double underscore, by a filtering symbols (see
Filtering records). If this parameter is omitted, values defined by the set_where method will be used. If the
set_where method was not called before the open method execution, and where parameter is omitted, then the
values of filters defined for the item will be used to filter records.

• order_by - use order_by to specify sort order of the records. This parameter is a list of field names. If there
is a sign ‘-’ before the field name, then on this field records will be sorted in decreasing order. If this parameter
is omitted, a list defined by the set_order_by method will be used.

• offset - use offset to specify the offset of the first row to get.

• limit - use limit to limit the output of a SQL query to the first so-many rows.

• funcs - this parameter can be a a dictionary, whose keys are a field names and values are function names that
will be applied to the fields in the SELECT Query

• group_by - use group_by to specify fields to group the result of the query by. This parameter must be a list
of field names.

• open_empty - if this parameter is set to true, the application does not send a request to the server but just
initializes an empty dataset. The default value if false.

• params - use the parameter to pass some user defined options to be used in the on_open event handler. This
parameter must be an object of key-value pairs

• safe - if set to True the method checks if the user that called the method has a right to view the item’s data
and, if not, raises an exception. The default value is False. See Roles

Examples

In this example the parameters of the request are a dictionary:

import datetime

def get_sales(item):
date1 = datetime.datetime.now() - datetime.timedelta(days=3*365)
date2 = datetime.datetime.now()
invoices = item.task.invoices.copy()

invoices.open({
'fields': ['customer', 'date', 'total'],
'where': {'date__ge': date1, 'date__le': date2},
'order_by': ['customer', 'date']

})

7.2. Server side (python) class reference 399

Jam.py documentation Documentation

Below the parameters are passed as a keyworded list:

import datetime

def get_sales(item):
date1 = datetime.datetime.now() - datetime.timedelta(days=3*365)
date2 = datetime.datetime.now()
invoices = item.task.invoices.copy()

invoices.open(
fields=['customer', 'date', 'total'],
where={'date__ge': date1, 'date__le': date2},
order_by=['customer', 'date']

)

The same result can be achieved by using set_fields, set_where, set_order_by methods:

import datetime

def get_sales(item):
date1 = datetime.datetime.now() - datetime.timedelta(days=3*365)
date2 = datetime.datetime.now()
invoices = item.task.invoices.copy()

invoices.set_fields('customer', 'date', 'total')
invoices.set_where(date__ge=date1, date__le=date2);
invoices.set_order_by('customer', 'date');
invoices.open();

import datetime

def get_sales(item): date1 = datetime.datetime.now() - datetime.timedelta(days=3*365) date2 = date-
time.datetime.now() invoices = item.task.invoices.copy()

invoices.set_fields([‘customer’, ‘date’, ‘total’]) invoices.set_where({‘date__ge’: date1, ‘date__le’: date2}); in-
voices.set_order_by([‘customer’, ‘date’]); invoices.open();

def get_sales(task) {
sales = task.invoices.copy()

sales.open(fields=['customer', 'id', 'total'],
funcs={'id': 'count', 'total': 'sum'},
group_by=['customer'],
order_by=['customer'])

See also

Dataset

Filtering records

set_fields

set_order_by

set_where

400 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

post

post(self)

domain: server

language: python

class Item class

Description

Writes a modified record to the item dataset. Call post to save changes made to a record after append, insert or edit
method was called.

The post method

• checks if an item is in edit or insert state , otherwise raises exception

• triggers the on_before_post event handler if one is defined for the item

• checks if a record is valid, if not raises exception

• If an item has details , post current record in details

• add changes to an item change log

• puts the item into browse state

• triggers the on_after_post event handler if one is defined for the item.

See also

Modifying datasets

prior

prior(self)

domain: server

language: python

class Item class

Description

Call prior to position the cursor on the previous record in the item dataset and make it the active record. last posts
any changes to the active record.

See also

Dataset

Navigating datasets

7.2. Server side (python) class reference 401

Jam.py documentation Documentation

record_count

record_count()

domain: server

language: python

class Item class

Description

Call record_count to get the total number of records ownered by the item’s dataset.

Example

item.open()
if item.record_count():

some code

See also

Dataset

open

set_fields

set_fields(self, lst=None, *fields)

domain: server

language: python

class Item class

Description

Use the set_fields method to define and store internally the fields parameter that will be used by the open
method, when its own fields parameter is not specified. The open method clears internally stored parameter value.

The fields is arbitrary argument list of field names.

Parameters

You can specify the fields as a list, the way the set_fields method on the client does or as non-keyworded arguments.

402 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Example

The result of the execution of following code snippets wil be the same:

item.open(fields=['id', 'invoicedate'])

item.set_fields('id', 'invoicedate')
item.open()

item.set_fields(['id', 'invoicedate'])
item.open()

See also

Dataset

open

set_order_by

set_order_by(self, lst=None, *fields)

domain: server

language: python

class Item class

Description

Use the set_order_by method to define and store internally the order_by parameter that will be used by the
open method, when its own order_by parameter is not specified. The open method clears internally stored parameter
value.

Parameters

You can specify the fields as a list, the way the set_order_by method on the client does or as non-keyworded arguments.

If there is a sign ‘-’ before a field name, then on this field records will be sorted in decreasing order.

Example

The result of the execution of following code snippets will be the same:

item.open(order_by=['customer', '-invoicedate'])

item.set_order_by('customer', '-invoicedate')
item.open();

7.2. Server side (python) class reference 403

Jam.py documentation Documentation

item.set_order_by(['customer', '-invoicedate'])
item.open();

See also

Dataset

open

set_where

set_where(self, dic=None, **fields)

domain: server

language: python

class Item class

Description

Use the set_where method to define and store internally the where filters that will be used by the open method,
when its own where parameter is not specified. The open method clears internally stored parameter value.

Parameters

You can specify the filters as a dictionary, the way the set_where method on the client does or as keyworded arguments

Example

The result of the execution of following code snippets wil be the same:

import datetime

date = datetime.datetime.now() - datetime.timedelta(days=3*365)
item.open(where={'customer': 44, 'invoicedate__gt': date})

import datetime

date = datetime.datetime.now() - datetime.timedelta(days=3*365)
item.set_where({'customer': 44, 'invoicedate__gt': date})
item.open()

import datetime

date = datetime.datetime.now() - datetime.timedelta(days=3*365)
item.set_where(customer=44, invoicedate__gt=date)
item.open()

404 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Dataset

open

Events

on_apply

on_apply(self, delta, params, connection)

domain: server

language: python

class Item class

Description

Write on_apply event handler when you need to override the standard data saving procedure during the execution
of the apply method on the client or server.

See on_apply events to understand how on_apply events are triggered.

The on_apply event handler has the following parameters:

• item - a reference to the item,

• delta - a delta containing item change log (discussed in more detail below),

• params - the parameters passed to the server by apply method,

• connection - the connection that will be used to save changes to the database.

The delta parameter contains changes that must be saved in the database. By itself, this option is an item’s copy, and
its dataset is the item’s change log. The nature of the record change can be obtained by using following methods:

• rec_inserted

• rec_modified

• rec_deleted

each of which returns a value of True, if the record is added, modified or deleted, respectively.

If the item has a detail items, delta also has a corresponding detail items, storing detail changes.

Note: Please note that when a record is deleted from an item and this record has detail records, the change log will
just keep this deleted record, information about the deleted records of the details is not stored. To add this deleted
detail records, call delta’s update_deleted method.

You do not need to open delta detail after the cursor has been moved to another record.

Delta dataset fields have an old_value attribute that can be used to get the value of a field before changes have been
made.

Fields of the delta dataset have an old_value attribute that can be used to get the value of a field before changes
have been made.

7.2. Server side (python) class reference 405

Jam.py documentation Documentation

when the on_apply event handler is not defined the apply_delta method is executed, that generates SQL queries
and executes them. After that it returns the information about the result of processing, that stores the id’s of the new
records as well. The client based on this information updates the item’s change log and values of the primary fields of
new records.

When on_apply event handler returns None the apply_delta is executed.

You can make some additional processing of the delta. In the following code, the a value of the date field is set to the
current date before changes are applied to the database table.

import datetime

def on_apply(item, delta, params, connection):
for d in delta:

d.edit()
d.date.value = datetime.datetime.now()
d.post()

Note: Please note that changes made this way are not reflected in the item dataset on the client. You can use the item
client methods refresh_record or refresh_page to display these changes.

In the following code, while saving the changes made to the invoices, the application as well updates the value of the
tracks_sold field for tracks in this invoices. All this is done in one transaction.

def on_apply(item, delta, params, connection):
tracks = item.task.tracks.copy()
changes = {}
delta.update_deleted()
for d in delta:

for t in d.invoice_table:
if not changes.get(t.track.value):

changes[t.track.value] = 0
if t.rec_inserted():

changes[t.track.value] += t.quantity.value
elif t.rec_deleted():

changes[t.track.value] -= t.quantity.value
elif t.rec_modified():

changes[t.track.value] += t.quantity.value - t.quantity.old_value
ids = list(changes.keys())
tracks.set_where(id__in=ids)
tracks.open()
for t in tracks:

q = changes.get(t.id.value)
if q:

t.edit()
t.tracks_sold.value += q
t.post()

tracks.apply(connection)

In the previous examples the on_apply event handler returns None so after that the apply_delta method is
executed by the application.

The more general case is:

def on_apply(item, delta, params, connection):

execute some code before changes are written to the database
(continues on next page)

406 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

(continued from previous page)

result = item.apply_delta(delta, params, connection)

execute some code after changes are written to the database

return result

See also

Server side programming

on_apply events

Modifying datasets

on_open

on_open(item, params)

domain: server

language: python

class Item class

Description

Write on_open event handler when you need to override the standard procedure of fetching the records from the
dataset during the execution of the open method on the client or server.

See on_open_events to understand how on_open events are triggered.

The on_open event handler has the following parameters:

• item - reference to the item,

• params - dictionary containing parameters passed to the server by the open method:

– __expanded - corresponds to the expanded parameter of the server open method / expanded at-
tribute of options parameter of the client open method

– __fields - list of field names

– __filters - list of items, each of which is a list with the following members:

* field name

* filter constant from Filtering records

* filter value

– __funcs - functions dictionary

– __order - list of items, each of which is a list with the following members:

* field name

* boolen value, if it is true the order is descending

– __offset - corresponds to the offset parameter of the open method

7.2. Server side (python) class reference 407

Jam.py documentation Documentation

– __limit - corresponds to the limit parameter of the open method

– __client_request - is true when request came from the client

params can also include user defined parameters passed to the open method.

Below is an example of params that the client open methods of invoices items sends to the server:

{
'__fields': [u'id', u'deleted', u'customer', u'firstname', u'date',

u'subtotal', u'taxrate', u'tax', u'total',
u'billing_address', u'billing_city', u'billing_country',
u'billing_postal_code', u'billing_state'],

'__filters': [[u'customer', 7, [6]]],
'__expanded': True,
'__limit': 11,
'__offset': 0,
'__order': [[u'date', True]]

}

{
'__fields': [u'id'],
'__funcs': {u'id': u'count'},
'__filters': [],
'__expanded': False,
'__offset': 0,
'__order': [],
'__summary': True

}

The server application generates an SQL query, based on params and executes them.

The server returns to the client the resulting records and the error message if it occurs during the execution.

Here is an example how server events can be used

See also

on_open_events

Server side programming

Dataset

7.2.6 Detail class

class Detail

domain: server

language: python

Detail class inherits attributes, methods and events of Item class

Attrubutes

408 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

master

master

domain: server

language: python

class Detail class

Description

Use master attribute to get reference to the master of the detail.

See also

Details

7.2.7 Reports class

class Reports

domain: server

language: python

Reports class is used to create the group object of the task tree that owns the reports of a project.

Below the events of the class are listed.

It, as well, inherits attributes and methods of its ancestor class AbstractItem class

Events

on_convert_report

on_convert_report(report)

domain: client

language: python

class: Reports class

Description

The framework converts reports internally, using LibreOffice. Use the on_convert_report event if you want to use
some other service or change some parameters of report conversion.

The report parameter is the report that triggered the event.

7.2. Server side (python) class reference 409

Jam.py documentation Documentation

Example

import os
from subprocess import Popen, STDOUT, PIPE

def on_convert_report(report):
try:

if os.name == "nt":
import _winreg
regpath = "SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\App

→˓Paths\\soffice.exe"
root = _winreg.OpenKey(_winreg.HKEY_LOCAL_MACHINE, regpath)
s_office = _winreg.QueryValue(root, "")

else:
s_office = "soffice"

convertion = Popen([s_office, '--headless', '--convert-to', report.ext,
report.report_filename, '--outdir', os.path.join(report.task.work_dir,

→˓'static', 'reports')],
stderr=STDOUT,stdout=PIPE)

out, err = convertion.communicate()
converted = True

except Exception as e:
print(e)

7.2.8 Report class

class Report

domain: server

language: python

Report class inherits

Below the attributes, methods and events of the class are listed.

It, as well, inherits attributes and methods of its ancestor class AbstractItem class

Attrubutes

report_filename

report_filename

domain: client

language: python

class Report class

Description

When the template attribute of the report is specified, the generate method saves the content of the generated report
to a file in a report folder of the static directory and set the value of the report_filename attribute to the name of the
saved file.

410 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Its value can be used in the on_after_generate event handler.

See also

Server-side report programming

generate

report_url

report_url

domain: client

language: python

class Report class

Description

The generate method sends to the client the value that is stored in this attribute as url of the generated file.

When the template attribute of the report is specified, this value is set by the generate method after it save generated
content. Otherwise a developer must set it himself.

See also

Server-side report programming

generate

template

template

domain: client

language: python

class Report class

Description

The report_filename attribute stores a file name of the report template. Usually it is set in the Application builder
when the report is created. But it can be changed dynamically on the server in the on_before_generate event handler
or be empty, if it’s necessary to create, for exapmle, some txt file.

7.2. Server side (python) class reference 411

Jam.py documentation Documentation

See also

Report templates

Creating a report

Server-side report programming

Mehods

generate

generate(self)

domain: client

language: python

class Report class

Description

The method is used internally to generate the content of the report.

When a server gets a request from a client to generate report, it first of all creates a copy of the report and then this
copy calls the method.

This method triggers the on_before_generate event.

If the report template is defined, parses it and triggers on_parsed and on_generate events.

In the on_generate event handler developer should write a code that generates the content of the report and saves it in
the ods file, by using the print_band method to print bands .

When the report is generated and the value of report extension attribute, set on the client, is not equal ods, the server
tries to convert the ods file.

To convert the file, it first checks if the report group (owner of the report) has on_convert_report event handler. If this
handler is defined it uses it to convert the report. Otherwise it uses for conversion the LibreOffice installed on the
server in headless mode.

After that the application saves generated report to a file in a report folder of the static directory, set the value of
the report_filename attribute to the name of the saved file, generates the value of the report_url attribute and triggers
on_after_generate event.

Once the report is generated it is saved in a report folder of the static directory and the server sends the client the
report file url.

If the report template attribute is not set, the server triggers the on_generate and after that on_after_generate events.
In this case you should save the generated content to a file yourself and and set a value of the report_url attribute.

See also

Programming reports

Server-side programming

412 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

hide_columns

hide_columns(self, col_list)

domain: client

language: python

class Report class

Description

Use hide_columns method to hide some columns defined in the report template.

The col_list parameter specifies which columns should be hidden. This is a list of integers or letters, defining the
position of the report columns.

Use this method in the on_parsed event handler.

Example

def on_parsed(report):
report.hide_columns(['A', 'C')

report.hide_columns([1, 3])

See also

Programming reports

Report templates

Server-side report programming

on_parsed

on_generate

print_band

print_band(self, band, dic=None)

domain: client

language: python

class Report class

Description

Use print_band method to set values of programmable cells of the band defined in the report template and add the band
to the content of the report.

It has the following parameters:

• band - specifies the name of the band to be printed.

7.2. Server side (python) class reference 413

Jam.py documentation Documentation

• dic - dictionary, containing values than will be assigned to programmable cells of the band.

Example

The following code generates content of the Customer list report of the Demo application:

def on_generate(report):
cust = report.task.customers.copy()
cust.open()

report.print_band('title')

for c in cust:
firstname = c.firstname.display_text
lastname = c.lastname.display_text
company = c.company.display_text
country = c.country.display_text
address = c.address.display_text
phone = c.phone.display_text
email = c.email.display_text
report.print_band('detail', locals())

See also

Programming reports

Report templates

Server-side report programming

generate

on_generate

Events

on_after_generate

on_after_generate(report)

domain: client

language: python

class Report class

Description

The on_after_generate event is triggered by the generate method, when the report has been generated and saved to a
file with the name that is stored in the report_filename attribute.

The report parameter is the report that triggered the event.

414 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Programming reports

generate

on_before_generate

on_before_generate(report)

domain: client

language: python

class Report class

Description

The on_before_generate event is triggered by the generate method, before generating the report.

The report parameter is the report that triggered the event.

See also

Programming reports

generate

on_generate

on_generate(report)

domain: client

language: python

class Report class

Description

The on_generate event is triggered by the generate method.

Write the on_generate event handler to generate the content of the report. Use the print_band method to print bands,
defined in the report template.

The report parameter is the report that triggered the event.

See also

Programming reports

Server-side report programming

Report templates

7.2. Server side (python) class reference 415

Jam.py documentation Documentation

generate

on_parsed

on_parsed(report)

domain: client

language: python

class Report class

Description

The on_parsed event is triggered by the generate method, after the report template have been parsed.

Use this event handler you hide some columns in the report template by calling hide_columns

The report parameter is the report that triggered the event.

See also

Programming reports

Server-side report programming

Report templates

hide_columns

7.2.9 Field class

class Field

domain: server

language: python

Attrubutes and properties

display_text

display_text

domain: server

language: python

Field class

416 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

Description

Represents the field’s value as a string.

Display_text property is a read-only string representation of a field’s value to display it to users. If an
on_get_field_text event handler is assigned, display_text is the value returned by this event handler. Otherwise,
display_text is the value of the lookup_text property for lookup fields and text property converted according to the
language locale settings for other fields.

Display_text is the string representation of the field’s value property when it is not being edited. When the field
is being edited, the text property is used.

Example

def on_generate(report):
cust = report.task.customers.copy()
cust.open()

report.print_band('title')

for c in cust:
firstname = c.firstname.display_text
lastname = c.lastname.display_text
company = c.company.display_text
country = c.country.display_text
address = c.address.display_text
phone = c.phone.display_text
email = c.email.display_text
report.print_band('detail', locals())

See also

Fields

Lookup fields

on_get_field_text

text

lookup_text

field_caption

field_caption

domain: server

language: python

Field class

Description

Field_caption attribute specifies the name of the field that appears to users.

7.2. Server side (python) class reference 417

Jam.py documentation Documentation

See also

Dataset

Fields

field_name

field_name

field_name

domain: server

language: python

Field class

Description

Specifies the name of the field as referenced in code. Use field_name to refer to the field in code.

See also

Dataset

Fields

field_caption

field_size

field_size

domain: server

language: python

Field class

Description

Identifies the size of the text field object.

See also

Dataset

Fields

418 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

field_type

field_type

domain: server

language: python

Field class

Description

Identifies the data type of the field object.

Use the field_type attribute to learn the type of the data the field contains. It is one of the following values:

• “text”,

• “integer”,

• “float”,

• “currency”,

• “date”,

• “datetime”,

• “boolean”,

• “blob”

See also

Dataset

Fields

lookup_text

lookup_text

domain: server

language: python

Field class

Description

Use lookup_text property to get the lookup value of the lookup field converted to string.

If the field is lookup field gives its lookup text, otherwise gives the value of the text property

7.2. Server side (python) class reference 419

Jam.py documentation Documentation

See also

Fields

Lookup fields

lookup_value

text

lookup_value

lookup_value

domain: server

language: python

Field class

Description

Use lookup_value property to get the lookup value of the lookup field

If the field is lookup field gives its lookup value, otherwise gives the value of the value property

See also

Fields

Lookup fields

lookup_value

lookup_text

owner

owner

domain: server

language: python

Field class

Description

Identifies the item to which a field object belongs.

Check the value of the owner attribute to determine the item that uses the field object to represent one of its fields.

420 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Dataset

Fields

raw_value

raw_value

domain: server

language: python

Field class

Description

Represents the data in a field object.

Use raw_value read only property to read data directly from the item dataset. Other properties such as value and
text use convesion. So the value property converts the null value to 0 for the numeric fields.

See also

Fields

value

text

read_only

read_only

domain: server

language: python

Field class

Description

Determines whether the field can be modified in data-aware controls.

Set read_only to true to prevent a field from being modified in data-aware controls.

See also

Fields

required

7.2. Server side (python) class reference 421

Jam.py documentation Documentation

required

required

domain: server

language: python

Field class

Description

Specifies whether a not empty value for a field is required.

Use required to find out if a field requires a value or if the field can be blank. When required property is set to
true, trying to post a null value will cause an exception to be raised.

See also

Fields

read_only

text

text

domain: server

language: python

Field class

Description

Use text property to get or set the text value of the field.

Getting text property value

Gets the value of the value property and converts it to text.

Setting text property value

Converts the text to the type of the field and assigns its value property to this value

422 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

See also

Fields

Lookup fields

lookup_value

text

lookup_text

value

value

domain: server

language: python

Field class

Description

Use value property to get or set the value of the field.

Getting value

When field data is null, the field converts it to 0, if the field_type is “integer”, “float” or “currency”, or to empty
string if field_type is “text”.

For lookup fields the value of this property is an integer that is the value of the id field of the corresponding record in
the lookup item. To get lookup value of the field use the lookup_value property.

Setting value

When a new value is assigned, the field checks if the current value is not equal to the new one. If so it

• sets its new_value attribute to this value,

• triggers the on_before_field_changed event if one is defined for the field,

• changes the field data to the new_value attribute and sets it to null,

• mark item as modified, so the is_modified method will return true

• triggers the on_field_changed event if one is defined for the field

• updates data-aware controls

See also

Fields

Lookup fields

lookup_value

7.2. Server side (python) class reference 423

Jam.py documentation Documentation

text

lookup_text

7.2.10 Filter class

class Filter

domain: server

language: python

Attrubutes and properties

filter_name

filter_name

domain: server

language: python

class Filter class

Description

Specifies the name of the filter as referenced in code. Use filter_name to refer to the field in code.

See also

Filters

Dataset

owner

owner

domain: server

language: python

class Filter class

Description

Identifies the item to which a filter object belongs.

Check the value of the owner attribute to determine the item that uses the filter object to represent one of its filters.

424 Chapter 7. Jam.py class reference

Jam.py documentation Documentation

value

value

domain: server

language: python

class Filter class

Description

Use value property to get or set the value of the filter.

Example

function on_view_form_created(item) {
item.filters.invoicedate1.value = new Date(new Date().setYear(new Date().

→˓getFullYear() - 1));
}

See also

Filters

Dataset

7.2. Server side (python) class reference 425

Jam.py documentation Documentation

426 Chapter 7. Jam.py class reference

CHAPTER 8

Release notes

8.1 Version 1

Version 1 was designed to develop database desktop applications based on the GTK Toolkit.

8.2 Version 2

In version 2, support for developing database applications with a web interface was added.

8.3 Version 3

In version 3, support for development of database desktop applications based on the GTK Toolkit was removed.

8.4 Version 4

In Version 4 the server side was reworked. Web.py library was replaced with werkzeug. Session support was added.

8.4.1 Version 4.0.70

Jam.py library:

• Bug, related to last column disappearance when table content is larger than its container, fixed.

• Bug, related to table footer, fixed.

• lookup_type property of Field class added

427

Jam.py documentation Documentation

• Exception is now raised when developer forgets to add a value attribute to a field, when specifing a value for
programmable cell.

• Bug, related to date and datetime fields in when clause for SQlite database, fixed.

• Administrator now shows project version / jam.py version information.

Demo application:

• Filter text bug in demo application fixed.

• Selection of search field for catalogs in demo applcation is added.

• Multiple record selection in invoices journal in demo application is added (used when delete button is clicked)

• Menu in demo application is changed.

• blue-theme.css file added

Twitter account created: https://twitter.com/jampy_framework

Jam.py Users Mailing List created: https://groups.google.com/forum/#!forum/jam-py

8.4.2 Version 4.0.71

Jam library:

• Tables are now responsive

• Fixed header columns and table columns mismatch

• Several themes added

Demo application:

• Dashboard added

• Theme selections added

• Resize function from Task client module removed

8.4.3 Version 4.0.74

Jam.py:

• Bug with open method, when order_by parameter is an empty list fixed

• Bug with sql generated when default order is set and fields parameter do not contain any of field of default order
in the open method fixed

• The exception handling of errors occuring in the code, when inplace editor is used reworked so developer can
find the reson of an error

Administrator:

• Tabs are now created for opened modules.

Demo application:

• Search for catalogs reworked.

428 Chapter 8. Release notes

https://twitter.com/jampy_framework
https://groups.google.com/forum/#!forum/jam-py

Jam.py documentation Documentation

8.4.4 Version 4.0.78

Jam.py:

• Import functionality for SQLITE databases is available now

• Creation of foreign field indexes for SQLITE databases are removed

• Popovers for fields with help attribute reworked

Admin:

• Bugs related to tabs are fixed

Demo:

• For Customers item email sending functionlally is added. It demonstrates the use of server method to execute
script defined in the server module from client module, how to use fields of item with virtual_table to create a
form for input of data.

8.4.5 Version 4.0.79

Jam.py:

• Tables columns resizing reworked

• Mysql - bug with datetime fields in where clause fixed

• on_ext_request event published

Demo application:

• For Customers lookup modal view form Send and Print buttons are hidden now

Documentation:

• Faq - new topics added

8.4.6 Version 4.0.81

Jam.py:

• Displaying of wells in modeless forms is corrected

• Async parameter for the client apply method added

• Bug of clone method when expanded attribute is false fixed

• Bug retated to lookup_value, lookup_text and display_text properties of fields and params with lookup_lists
fixed

• Bug, when users were able to print reports when ‘Can view’ was disabled for their role, fixed

• Open, set_where, set_fields, set_order_by methods on the server can have the same parameters as corresponding.
methods on the client

• Edit_record, apply changes, cancel_edit methods on the client modified so that user can open documents for
viewing when can_edit method returns false

• When converting reports the soffice is passed norestore parameters

• Starting ‘/’ signs are removed from css and js links in index.html file

•

8.4. Version 4 429

Jam.py documentation Documentation

Administrator:

• Validation of field names is corrected

Demo application:

• Select button added to the Invoices edit form to add selected tracks to the invoice.

• Visible items whose set_view method returns false are not added to the dynamic menu

8.4.7 Version 4.0.84

Library:

• Python 3 is now supported

• The work is started to support multiple languages

• Reports on server now have ext attribute

Demo:

• Example of using on_convert_report event of reports group on the server is created

8.4.8 Version 4.0.88

Library:

• Html templates reworked

• You can change 12px default font to 14px default font by replace jam.css to jam14.css in index.html

Demo:

• New examples of using html templates

8.5 Version 5

8.5.1 Version 5.0.1

Library:

• Default font is 14px now you can change it to 12px font by replacing

<link href="jam/css/jam.css" rel="stylesheet">

with

<link href="jam/css/jam12.css" rel="stylesheet">

in index.html

• Administrator is renamed to Application builder you can run it by typing 127.0.0.1:8080/builder.html,
127.0.0.1:8080/admin.html is also supported

• Asterisk is added to required fields now

To cancel it add

430 Chapter 8. Release notes

Jam.py documentation Documentation

.control-label.required:after {
content: "";

}

to project.css file

• Selection of lookup list value in report parameters for fixed.

Documentation:

• First version of Documentation completed

• New topics added:

refresh_record

refresh_page

search

• Jam.py roadmap added

Demo:

• Small font menu item is added to Themes menu

8.5.2 Version 5.1.1

Library:

• History of changes made by users can now be stored. See Saving the history of changes made by users

• Local filtering of dataset records is reworked and published. See Filtered, on_filter_record

• clone method is published

• Application is now throws an exception when an attempt is made to get or set a value to a field when the dataset
is empty.

Application Builder:

• Delete reports after attribute is added to Project parameters

• Some changes to interface are made.

8.5.3 Version 5.2.1

Library:

• DBtable class declared jam.js reworked. Paginator div is removed from table and doesn’t scroll when table is
scrolled. For tables with pagination y scrolling is removed. You can pass create_table method two new options:

– summary_fields - a list of field names. When it is specified and item paginate attribute is true, the table
calculates sums for numeric fields and displays them in the table footer, for not numeric fields it displays
the number of records.

– freeze_count - an integer value. If it is greater than 0, it specifies number of first columns that become
frozen - they will not scroll when the table is scrolled.

• Bug when inserting a new record and pressing Escape key doesn’t cancel operation fixed

• Bug when history doesn’t save user name fixed

8.5. Version 5 431

Jam.py documentation Documentation

Demo project:

• Code that calculated summary for table in invoices client module removed

• Code of on_view_form_created event handler in the task client module of demo application and new project is
changed so after deleting a record the refresh_page method is called

8.5.4 Version 5.3.1

Library:

• A set of client methods of the task for working with tabs developed

– init_tabs

– add_tab

– close_tab

• Forms are reworked. Each form now have a div with modal-header class declared in the index.html file. The
elements for search input and filter text are removed from the form templates and placed in the form header.

• The view, append_record, insert_record and edit_record methods are reworked. If a container parameter is
passed to these methods and the init_tabs method is called for the conainer, the tabs are created that contains the
forms.

For existing projects add the line

task.init_tabs($("#content"));

at the beginning on the on_page_loaded event handler of the task client module to forms be desplayed in tabs
and add a $(“#content”) container parameter to append_record, insert_record and edit_record methods.

You can add a line

task.add_form_borders = false;

if you don’t want to change html templates of the forms. Otherwise remove elements for search input and filter
text (in the div with form-header class, remove it) from the form templates and add the div with modal-header
class to templates.

Demo:

• Demo was rewritten to display forms in tabs and modeless edit forms

Documentation:

• on_ext_request example corrected for Python 3

8.5.5 Version 5.3.3

Library:

• Safe mode bug (after version 5.3.1) fixed

• Postgres import bug fixed

• Task attribute edit_form_container is defined in the on_page_loaded event handler of the task client
module of a new project and demo application

432 Chapter 8. Release notes

Jam.py documentation Documentation

task.edit_form_container = $("#content"); // comment this line to have modal edit
→˓forms

8.5.6 Version 5.4.1

Application builder

• The language attribute is added to the Project parameters to select the language used in the Project and allows
to add or edit the language.

• Interface tab added to Project parameters dialog

• Buttons “View” and “Edit” renamed to “View form” and “Edit form”

• The “View form” dialog lets now setup, besides fields used to create tables, table options such as columns to set
sorting order and summary fields. Use “Form” tab to setup from options including detail that will be desplayed
in the view form

• The “Edit form” dialog allows to create tabs and bands to display field inputs in the edit forms. You can setup
details that will be displayed and edited in the edit form in the “Form” tab

Library

• First stage of internalization completed. Developpers can add their languages

• Processing of form events worked over. See _process_event method in jam.js

• To avoid concurrency problems and memory leaks the task tree on the server side is imutable now, except when
on_created event is executed. You must use copy method when you need to call open method or want to change
attributes of items in the event handlers or functions on the server

• The create_detail_views method added that allows to edit details in the edit forms

• Item class: table_options attribute added (contains table options setup in the AppBuilder)

• DBAbstructInput class: coping, pasting, Escape key processing worked over

• DBTable class: hints worked over

• Themes were corrected

• A lot of minor changes

Demo application

• Themes removed. You can set theme in the Project parameters Interface tab.

• Dynamic menu worker over

Note: If you created your project with a version of the library less than 4.3.1 add the following line in the
on_page_loaded event handler in the task’s client module:

task.old_forms = true;

8.5. Version 5 433

Jam.py documentation Documentation

For libraries with versions 4.3, clear the code of client modules of catalogs and journals and replace client module
of the task with the corresponding code of the Demo application or the new project. Make an archive of the project
before doing it.

8.5.7 Version 5.4.11

Library:

• Metadata import/export and copy_database method of the server task reworked for compatibility with different
databases, when a project moved to a database of different type

• on_detail_changed event and calc_summary method added

• alert, alert_info and alert_success methods added

• python 3 bugs of MYSQL, Postgres, Oracle database support fixed

• some bugs fixed related to SQL queries generation

• on_login event bugs fixed

• field_mask attribute for fields on client added

• date inputs use masks now

• create_menu method of the client task added.

• As much code as possible are moved from default code (and demo project) to the library

• Bugs related to non-ascii characters in the project path fixed

Application builder:

• keyboard shortcuts bugs fixed

• roles bugs fixed

• rights can be set for details

• mask attribute added to Fields Dialog

• Summary fields attribute added in the View Form Dialog for details

• Default search field, Detail height attributes added in the View Form Dialog

• Detail height attribute added in the Edit Form Dialog

• some minor bugs fixed

Note: To use masks in existing projects the following line must be added to index.html after package update:

<script src=”jam/js/jquery.maskedinput.js”></script>

before

<script src=”jam/js/jam.js”></script>

8.5.8 Version 5.4.14

Library:

• add_button method added

434 Chapter 8. Release notes

Jam.py documentation Documentation

• select_records method added

• alert method bugs fixed

• bootstrap theme buttons changed

• Metadata import bug fixed - didn’t display error that was raised when changes to DB were commited

8.5.9 Version 5.4.15

Library:

• Support for MS SQL SERVER added

• Jam.py supports deletion and changing of fields, and foreign indexes for SQLITE database now. As SQLITE
doesn’t support column changing and deletion and addition of foreign indexes to existing tables, Jam.py creates
a new table and copies records into it from old one.

• for SQLITE database Jam.py doesn’t support import of metadata to an existing project (project items of which
have corresponding tables in database) now. You can import of metadata to a new project

• BLOB field type renamed to LONGTEXT and corresponding DB field changed from Blob (if it was) to Long
text type wherever possible

Application Builder:

• History item creation bug fixed

• Foreign indexes creation bug fixed

8.5.10 Version 5.4.21

Library:

• SQLITE - case insensitive search implemented

• MSSQL bugs fixed

• Search reworked

• Field Dialogs - you can spesify default values for DATE, DATETIME, BOOLEAN fields and for lookup fields
that are based on lookup lists. Theses default values are assigned to fields when append or insert methods of
element are called on the client or server. These default values are not applied when you are changing table
record using direct SQL query.

• select_records method reworked

• add_view_button, add_edit_button methods added

• When user tries to close or reload page and there is an item that is being edited and its data has been modified
the applcation warns user about it.

• A lot of miscellaneous bug fixed

• FAQ, Application Builder, Into chapter in the documentation reworked

8.5.11 Version 5.4.22

Library:

• upload method reworked

8.5. Version 5 435

Jam.py documentation Documentation

• Image and file field types added - Tutorial. Part 2. File and image fields

• Buttons on top attribute added to the Form tab of the View Form Dialog

• refresh_record method reworked, it can refresh details of the item

• on_field_get_html event added

Demo application:

• Invoices: on_field_get_html handler added

• Customer: image field “Photo” added

• Tracks: file field “File” added

8.5.12 Version 5.4.23

Library:

• refresh_record bugs fixed

• Image and file fields can be lookup fields now

Application builder:

• creating new group bug fixed

8.5.13 Version 5.4.24

Library:

• Language support reworked

• Images of image fields of Application builder items are stored in static/builder folder now to be able to ex-
port/import them to/from metadata file

• MSSQL ALTER TABLE bug fixed

8.5.14 Version 5.4.27

Library:

• Capturing image from camera options is now available. See Capturing image from camera in the Field Editor
Dialog

• Bug in Chrome 7 with report parameters order is fixed.

• Buttons on top attribute added to the Form tab of the Edit Form Dialog Works for new projects, for existing
project copy the div with class ‘default-top-edit’ form a new project index.html to your index.html

• read_only reworked

• on_login event params changed, previous params supported with warning in the logs

• There can be multiple details in view form

• Details order can be changed now

• Esprima-python library is used now for parsing javascript on the server

• German translation added

436 Chapter 8. Release notes

Jam.py documentation Documentation

• Various minor bugs fixed

• Readme file changed

Demo application:

• Tracks catalog view form displays sold tracks.

8.5.15 Version 5.4.29

Library:

• Jam.py uses JQuery 3 now

• lock method added

• create_connection_ex method added

• edit_record method reworked, the edit form events are triggered after all data are get from the server

• connection of connection pull is recreated after one houre of inactivity

• minor bugs fixed

Documetation:

• How can I perform calculations in the background

• How can I use data from other database tables

8.5.16 Version 5.4.30

• Bug when creating a new project on some systems, related to encoding, fixed

• Greek language added

• For fields of longtext type when value is null value property returns empty string now.

• select_records method reworked. all_record parameter added. If the all_records parameter is set to true, all
selected records are added, otherwise the method omits existing records (they were selected earlier).

• view_form_created and edit_form_created methods added to the Task class (reserved for future use)

• Code that used to create tables and detail tables in on_view_form_created event handler of task moved to cre-
ate_view_tables method of Item class in jam.js module

• table_container_class and detail_container_class attributes added to items view_options to enable developer to
change in on_view_form_created event hander of item

• inputs_container_class and detail_container_class attributes added to items edit_options to enable developer to
change in on__form_created event hander of item

• In jam.css and jam12.css fixed the btn groups left magrin in form-header and form-footer class

• Some minor bugs fixed

8.5.17 Version 5.4.31

• Bug when reading index.html file fixed. Index.html must have a unicode encoding.

• German translation updated.

• Bug when Dashbord are opened fixed in Demo.

8.5. Version 5 437

Jam.py documentation Documentation

• Users item added to demo.

• on_login event handler in task server module that uses Users item to login is written (commented) and changing
of password implemented. Uncomment on_login to see how it works. Description is here https://groups.google.
com/forum/#!topic/jam-py/Obkv5d3yT8A

8.5.18 Version 5.4.36

Library:

• tables reworked, they now support virtual scrolling.

• some bugs fixed

Application Builder:

• Search added for items.

Demo application:

• User registration implemented

8.5.19 Version 5.4.37

Library:

• Jam.py can now be deployed on PythonAnywhere. See How to deploy project on PythonAnywhere

• Directory of the project can be passed to the create_application function now (jam/wsgi.py module).

• Multiprocessing connection pool parameter removed from project Parameters

• Bugs related to processing of keyboard events by forms fixed

• Some bugs fixed

Documentation:

• How to section created. That section will contain code examples that can be useful to quickly accomplish
common tasks.

8.5.20 Version 5.4.40

Library:

• Jam.py now uses SQLAlchemy connection poll

• when image field read_only attribute is set user can not change the image by double-clicking on it

• Some bugs fixed

Documentation:

deployment section added to How to

How to lock a record so that users cannot edit it at the same time topic added

438 Chapter 8. Release notes

https://groups.google.com/forum/#!topic/jam-py/Obkv5d3yT8A
https://groups.google.com/forum/#!topic/jam-py/Obkv5d3yT8A
https://www.pythonanywhere.com

Jam.py documentation Documentation

8.5.21 Version 5.4.53

Library:

• on_login event changed

• generate_password_hash and check_password_hash mathods added

• bugs related to moving to SQLAlchemy and tables with virtual scroll are fixed.

• tables resizing bug for numneric fields fixed

• tables with freezed cols bugs fixed

• details bug when renaming copy fixed

• minor bugs fixed

Documentation:

• latest docs changes

• how to section bug fixed

• ‘How to lock a record so that users cannot edit it at the same time’ topic removed - other algorithm will be used

8.5.22 Version 5.4.54

Library:

• MSSQL bug when selecting tables for import fixed

• delta old_value property code modified (not documented yet)

Documentation:

• Authentication section added to How to

8.5.23 Version 5.4.56

Library:

• Record locking is avaliable

• task creation in wsgi.py modified to avoid ‘project have not been created yet’ message

• report parameters display_text bug fixed

• show_hints and hint_fields attributes can be added to the table_options or options parameter of the
create_table method.

• refresh_record method restore positions of detail records

Documentation:

• Form events rewriten

• Some topics from Jam.py FAQ are moved to How to

Demo application

• on_apply event handler in Invoices server module modified

8.5. Version 5 439

Jam.py documentation Documentation

8.5.24 Version 5.4.57

Library:

• Record locking bug, when PostgreSQL, MSSQL or Firebird database is used, fixed

To use record locking for items for which you defined on_apply event handler you must change. Add the connection
parameter, create a cursor and use the cursor to execute sql queries. Otherwise the record locking won’t work.

For example, the code

def on_apply(item, delta, params):
tracks_sql = []
delta.update_deleted()
for d in delta:

for t in d.invoice_table:
if t.rec_inserted():

sql = "UPDATE DEMO_TRACKS SET TRACKS_SOLD = COALESCE(TRACKS_SOLD, 0)
→˓+ \

%s WHERE ID = %s" % \
(t.quantity.value, t.track.value)

elif t.rec_deleted():
sql = "UPDATE DEMO_TRACKS SET TRACKS_SOLD = COALESCE(TRACKS_SOLD, 0) -

→˓ \
(SELECT QUANTITY FROM DEMO_INVOICE_TABLE WHERE ID=%s) WHERE ID = %s"

→˓% \
(t.id.value, t.track.value)

elif t.rec_modified():
sql = "UPDATE DEMO_TRACKS SET TRACKS_SOLD = COALESCE(TRACKS_SOLD, 0) -

→˓ \
(SELECT QUANTITY FROM DEMO_INVOICE_TABLE WHERE ID=%s) + %s WHERE ID =

→˓%s" % \
(t.id.value, t.quantity.value, t.track.value)

tracks_sql.append(sql)
sql = delta.apply_sql()
return item.task.execute(tracks_sql + [sql])

must be changed to

def on_apply(item, delta, params, connection):
with item.task.lock('invoice_saved'):

cursor = connection.cursor()
delta.update_deleted()
for d in delta:

for t in d.invoice_table:
if t.rec_inserted():

sql = "UPDATE DEMO_TRACKS SET TRACKS_SOLD = COALESCE(TRACKS_SOLD,
→˓0) + \

%s WHERE ID = %s" % \
(t.quantity.value, t.track.value)

elif t.rec_deleted():
sql = "UPDATE DEMO_TRACKS SET TRACKS_SOLD = COALESCE(TRACKS_SOLD,

→˓0) - \
(SELECT QUANTITY FROM DEMO_INVOICE_TABLE WHERE ID=%s) WHERE ID =

→˓%s" % \
(t.id.value, t.track.value)

elif t.rec_modified():
sql = "UPDATE DEMO_TRACKS SET TRACKS_SOLD = COALESCE(TRACKS_SOLD,

→˓0) - \
(continues on next page)

440 Chapter 8. Release notes

Jam.py documentation Documentation

(continued from previous page)

(SELECT QUANTITY FROM DEMO_INVOICE_TABLE WHERE ID=%s) + %s WHERE
→˓ID = %s" % \

(t.id.value, t.quantity.value, t.track.value)
cursor.execute(sql)

8.5.25 Version 5.4.60

Library:

• Synchronization of parameters and reloading of the task tree when metadata changes for web applications run-
ning on parallel processes reworked.

• Import of metadata reworked. See Export/import metadata

• Created the ability to import metadata from the migration folder when the server is restarted. See How to migrate
development to production

• Migration to another database is available now. See How to migrate to another database

• virtual_table is now a read-only property on the client virtual_table and server virtual_table. For an item which
virtual_table property is true, calling the open method creates an empty data set, and calling the apply method
does nothing.

• When importing a table the virtual_table attribute id read only now.

• title_line_count option is added to the table_options specifies the number of lines of text displayed in a title row,
if it is 0, the height of the row is determined by the contents of the title cells It can be set in Application Builder.

8.5.26 Version 5.4.69

Library:

• Werkzeug library upgraded to the version 0.15.4

• common.py module rewritten, consts object created

• adm_server.py module removed

• admin folder is created with modules

– admin.py - application builder server side module

– task.py - loading of task from admin.sqlite database

– export_metadata.py

– import_metadata.py

• builder folder added to package that contains Application Builder project that is used to create Jam.py Applica-
tion Builder, see read.me file in the folder.

• task loading accelerated

• import of metadata rewritten

• import of metadata accelerated

• permissions property added

• logging created (currently under development and not documented yet)

• edit method on the client and server checks now if item state is in edit mode and if it is does nothing

8.5. Version 5 441

Jam.py documentation Documentation

• round methods are corrected on the client and server, value of currency fields are rounded before they are
assigned

• inline editing is now available for any items (not details only)

• inline editing of lookup fields, list fields, date and datetime inputs reworked, bugs fixed

• fixed columns of tables bugs fixed

• tables striped option added

• search input is focused now by Ctrl-F, Escape returns focus to the table

• enable_controls redraws controls now, no need to call update_controls method

• lot of bugs fixed

Application builder:

• a link to the form-related documentation page has been added to the application Builder form headers

Documetation:

• search bug fixed

• topics related to the server on_apply and on_open events rewritten

• new topic added How to prohibit changing record

8.5.27 Version 5.4.109

• The work on sanitizing of field values is completed. See Sanitizing

• The TextArea attribute is added the Interface Tab of the Edit Form Dialog for TEXT fields

• The Do not sanitize attribute is added the Interface Tab of the Edit Form Dialog. See Sanitizing

• The Accept attribute of the Interface Tab of the Edit Form Dialog for FILE fields is required now. Uploaded
files are checked on the server against this attribute.

• The Upload file extensions attribute is added to the Project parameters that defines file types that are allowed
to be uploaded by the task upload method.

• The expanded options is added to the add_edit_button and add_view_button methods.

8.6 Jam.py roadmap

We plan to add the following features to Jam.py:

• Support for actions that can be represented as buttons panels, navbars, pop-up menus and simplifying support
for keyboard events, internalization and mobile devices.

• Language support stage 2: internalization, support for multiple languages in the project.

• Support for Bootstrap 4.

• Support for mobile devices.

• Development of report wizards, simplifying report creation

• Rework of import/export utility: visual interface, control over merging of changes.

• DBTree component revision and creation of documentation

442 Chapter 8. Release notes

Index

A
abort() (built-in function), 220
AbstractItem (built-in class), 363
AbstractItem() (class), 217
active, 380
active (None attribute), 255
add_edit_button() (built-in function), 272
add_tab() (built-in function), 233
add_view_button() (built-in function), 273
admin, 363
alert() (built-in function), 220
app, 369
App (built-in class), 362
append(), 384
append() (built-in function), 274
append_record() (built-in function), 274
apply() (built-in function), 275
apply_record() (built-in function), 277
assign_filters() (built-in function), 277

B
bof(), 387
bof() (built-in function), 278

C
calc_summary() (built-in function), 278
can_create(), 388
can_create() (built-in function), 279
can_delete(), 388
can_delete() (built-in function), 280
can_edit(), 389
can_edit() (built-in function), 280
can_view(), 368
can_view() (built-in function), 221
cancel(), 389
cancel() (built-in function), 281
cancel_edit() (built-in function), 282
check_password_hash(), 370
clear_filters(), 390

clear_filters() (built-in function), 282
clone() (built-in function), 283
close() (built-in function), 283, 390
close_edit_form() (built-in function), 284
close_filter_form() (built-in function), 284
close_param_form() (built-in function), 344
close_tab() (built-in function), 234
close_view_form() (built-in function), 285
connect(), 370
copy(), 391
copy() (built-in function), 286
copy_database(), 371
create_connection(), 372
create_connection_ex(), 372
create_detail_views() (built-in function), 287
create_edit_form() (built-in function), 288
create_filter_form() (built-in function), 289
create_filter_inputs() (built-in function), 290
create_inputs() (built-in function), 291
create_menu: function() (built-in function),

234
create_param_form() (built-in function), 345
create_param_inputs() (built-in function), 345
create_table() (built-in function), 292
create_view_form() (built-in function), 292

D
delete(), 391
delete() (built-in function), 293
delete_record() (built-in function), 294
Detail (built-in class), 408
Detail() (class), 338
details, 380
details (None attribute), 255
disable_controls() (built-in function), 294
disable_edit_form() (built-in function), 295
display_text, 416
display_text (None attribute), 351
download() (built-in function), 359

443

Jam.py documentation Documentation

E
each() (built-in function), 296
each_detail() (built-in function), 297
each_field() (built-in function), 297
each_filter() (built-in function), 298
each_item() (built-in function), 222
edit(), 392
edit() (built-in function), 299
edit_form (None attribute), 256
edit_options (None attribute), 257
edit_record() (built-in function), 299
enable_controls() (built-in function), 300
enable_edit_form() (built-in function), 301
environ, 364
eof(), 393
eof() (built-in function), 301
execute(), 372
extension (None attribute), 341

F
Field (built-in class), 416
Field() (class), 350
field_by_name(), 393
field_by_name() (built-in function), 302
field_caption, 417
field_caption (None attribute), 351
field_mask (None attribute), 352
field_name, 418
field_name (None attribute), 352
field_size, 418
field_size (None attribute), 353
field_type, 419
field_type (None attribute), 353
fields, 381
fields (None attribute), 258
Filter (built-in class), 424
Filter() (class), 360
filter_by_name(), 394
filter_by_name() (built-in function), 302
filter_caption (None attribute), 360
filter_form (None attribute), 258
filter_name, 424
filter_name (None attribute), 361
filter_options (None attribute), 259
filtered (None attribute), 260
filters, 381
filters (None attribute), 260
first(), 394
first() (built-in function), 303
forms_container (None attribute), 230
forms_in_tabs (None attribute), 230

G
generate(), 412

generate_password_hash(), 373
Group (built-in class), 379
Group() (class), 248

H
hide_columns(), 413
hide_message() (built-in function), 222

I
ID, 364
ID (None attribute), 217
init_tabs() (built-in function), 236
insert(), 394
insert() (built-in function), 303
insert_record() (built-in function), 304
is_changing() (built-in function), 304, 395
is_edited() (built-in function), 305, 395
is_modified() (built-in function), 305, 396
is_new() (built-in function), 306, 396
Item (built-in class), 379
Item() (class), 254
item_by_ID(), 368
item_by_ID() (built-in function), 222
item_caption, 364
item_caption (None attribute), 218
item_name, 365
item_name (None attribute), 218
item_state, 382
item_state (None attribute), 261
item_type, 365
item_type (None attribute), 218
items, 366
items (None attribute), 219

L
last(), 397
last() (built-in function), 306
load() (built-in function), 236
load_module() (built-in function), 223
load_modules() (built-in function), 223
load_script() (built-in function), 224
locate(), 397
locate() (built-in function), 306
lock(), 374
log_changes, 383
log_changes (None attribute), 262
login() (built-in function), 237
logout() (built-in function), 238
lookup_field (None attribute), 262
lookup_text, 419
lookup_text (None attribute), 354
lookup_type (None attribute), 354
lookup_value, 420
lookup_value (None attribute), 355

444 Index

Jam.py documentation Documentation

M
master, 409
master (None attribute), 338
message() (built-in function), 225

N
next(), 398
next() (built-in function), 307

O
on_after_generate() (built-in function), 414
on_before_generate() (built-in function), 415
on_convert_report() (built-in function), 409
on_generate() (built-in function), 415
on_parsed() (built-in function), 416
open() (built-in function), 307, 359
owner, 366, 420
owner (None attribute), 219, 355, 361, 424

P
paginate (None attribute), 263
param_form (None attribute), 342
param_options (None attribute), 343
permissions (None attribute), 263
post(), 401
post() (built-in function), 309
print() (built-in function), 347
print_band(), 413
prior(), 401
prior() (built-in function), 310
process_report() (built-in function), 347

Q
question() (built-in function), 227

R
raw_value, 421
raw_value (None attribute), 356
read_only, 421
read_only (None attribute), 264, 356
rec_count (None attribute), 265
rec_no, 383
rec_no (None attribute), 265
record_count(), 402
record_count() (built-in function), 311
refresh_page() (built-in function), 311
refresh_record() (built-in function), 312
Report (built-in class), 410
Report() (class), 341
report_filename, 410
report_url, 411
Reports (built-in class), 409
Reports() (class), 339

required, 422
required (None attribute), 357

S
safe_mode (None attribute), 231
search() (built-in function), 312
select(), 375
select_records() (built-in function), 313
selections (None attribute), 266
server() (built-in function), 227
session, 367
set_fields(), 402
set_fields() (built-in function), 313
set_forms_container() (built-in function), 239
set_order_by(), 403
set_order_by() (built-in function), 314
set_where(), 404
set_where() (built-in function), 315
show_history() (built-in function), 315

T
table_name, 384
table_options (None attribute), 267
task, 363, 367
Task (built-in class), 369
task (None attribute), 219
Task() (class), 229
template, 411
templates (None attribute), 231
text, 422
text (None attribute), 357

U
update_controls() (built-in function), 316
upload() (built-in function), 239
user_info (None attribute), 232

V
value, 423, 425
value (None attribute), 358, 361
view() (built-in function), 316
view_form (None attribute), 270
view_options (None attribute), 271
virtual_table, 384
virtual_table (None attribute), 272
visible (None attribute), 362

W
warning() (built-in function), 228
work_dir, 369

Y
yes_no_cancel() (built-in function), 229

Index 445

	Jam.py documentation
	How the documentation is organized
	Video Tutorials

	Getting started
	Installation
	Creating a project
	Demo project
	Tutorial. Part 1. First project
	Tutorial. Part 2. File and image fields
	Tutorial. Part 3. Details
	Jam.py deployment with Apache and mod_wsgi

	Jam.py programming
	Task tree
	Workflow
	Working with modules
	Client side programming
	Data programming
	Server side programming
	Programming reports

	Jam.py FAQ
	What is the difference between catalogs and journals
	Howto upgrade an already created project to a new version of jampy?
	What are foreign keys used for?
	Can I use other libraries in my application
	When printing a report I get an ods file instead of pdf

	How to
	How to install Jam.py on Windows
	How to migrate development to production
	How to migrate to another database
	How to deploy
	How do I write functions which have a global scope
	How to validate field value
	How to add a button to a form
	How to execute script from client
	How to change style and attributes of form elements
	How to create a custom menu
	How to append a record using an edit form without opening a view form?
	How to prohibit changing record
	How to link two tables
	How change field value of selected records
	How to save edit form without closing it
	How to save changes to two tables in same transaction on the server
	How to prevent duplicate values in a table field
	How to implement some sort of basic multi-tenancy? For example, to have users with separate data.
	Can I use Jam.py with existing database
	How can I use data from other database tables
	How I can process a request or get some data from other application or service
	How can I perform calculations in the background
	Is it supported to have details inside details?
	Export to / import from csv files
	Authentication

	Business application builder
	Sanitizing
	Accept string
	Project management
	Roles
	Users
	Code editor
	Task
	Groups
	Items
	Details
	Lookup List Dialog
	Intergation with existing database
	Saving audit trail/change history made by users
	Record locking
	Language support
	Language translation

	Jam.py class reference
	Client side (javascript) class reference
	Server side (python) class reference

	Release notes
	Version 1
	Version 2
	Version 3
	Version 4
	Version 5
	Jam.py roadmap

	Index

