

Jam.py documentation contents

	Getting started
	Installation
	Install python

	Install Jam.py

	Setting up a virtual environment

	Install Jam.py

	Common pitfalls

	Creating a project

	Demo project

	Tutorial. Part 1. First project
	New project

	New catalog

	Lookup fields

	Lookup lists

	Customizing Forms

	Indexes

	Filters

	Tutorial. Part 2. File and image fields
	Adding Image field

	Capturing image from camera

	Adding file field

	Tutorial. Part 3. Details

	Deployment
	See also

	Jam.py programming
	Task tree
	Video

	Workflow
	Video

	Working with modules

	Client side programming
	Index.html

	Initializing application

	Forms

	Form templates

	Form events

	Form options

	Data-aware controls

	Data programming
	Dataset

	Navigating datasets

	Modifying datasets

	Fields

	Common fields

	Lookup fields

	Filtering records

	Filters

	Details

	Server side programming
	on_apply events

	on_open_events

	Programming reports
	Report templates

	Creating a report

	Report parameters

	Client-side report programming

	Server-side report programming

	Jam.py FAQ
	What is the difference between catalogs and journals

	Howto upgrade an already created project to a new version of jampy?

	What are foreign keys used for?

	Can I use other libraries in my application

	When printing a report I get an ods file instead of pdf

	How to
	How to install Jam.py on Windows
	Install Python

	About pip

	Setting up a virtual environment

	Install Jam.py

	Common pitfalls

	How to migrate development to production
	New project migration

	Existing project migration

	Importing metadata with server shutdown

	Importing metadata without server shutdown

	How to migrate to another database

	How to deploy
	How to deploy project on PythonAnywhere

	A step-by-step guide to deploy a Jam.py on the AWS

	How to deploy jam-py app at Linux Apache http server?

	How to do with Nginx with Gunicorn?

	How do I write functions which have a global scope

	How to validate field value

	How to add a button to a form

	How to execute script from client

	How to change style and attributes of form elements

	How to create a custom menu

	How to append a record using an edit form without opening a view form?

	How to prohibit changing record

	How to link two tables

	How change field value of selected records

	How to save edit form without closing it

	How to save changes to two tables in same transaction on the server

	How to prevent duplicate values in a table field

	How to implement some sort of basic multi-tenancy? For example, to have users with separate data.

	Can I use Jam.py with existing database

	How can I use data from other database tables

	How I can process a request or get some data from other application or service

	How can I perform calculations in the background

	Is it supported to have details inside details?

	Export to / import from csv files

	Authentication
	How to authenticate from custom users table

	How to create registration form

	How to give user ability to change the password

	Business application builder
	Project management
	Parameters

	Database

	Export

	Import

	Find

	Print

	Export/import metadata

	Roles

	Users
	See also

	Code editor

	Task

	Groups
	Item Group Editor

	Report Group Editor

	Detail Group Editor

	Items
	Item Editor Dialog

	Field Editor Dialog

	Edit Form Dialog

	View Form Dialog

	Filters Dialog

	Details Dialog

	Order Dialog

	Indices Dialog

	Foreign Keys Dialog

	Reports Dialog

	Details

	Lookup List Dialog

	Intergation with existing database

	Saving audit trail/change history made by users

	Record locking

	Language support
	Language locale

	Language translation

	Language translation

	Jam.py class reference
	Client side (javascript) class reference
	AbstractItem class

	Task class

	Group class

	Item class

	Detail class

	Reports class

	Report class

	Field class

	Filter class

	Server side (python) class reference
	App class

	AbstractItem class

	Task class

	Group class

	Item class

	Detail class

	Reports class

	Report class

	Field class

	Filter class

	Release notes
	Version 1

	Version 2

	Version 3

	Version 4
	Version 4.0.70

	Version 4.0.71

	Version 4.0.74

	Version 4.0.78

	Version 4.0.79

	Version 4.0.81

	Version 4.0.84

	Version 4.0.88

	Version 5
	Version 5.0.1

	Version 5.1.1

	Version 5.2.1

	Version 5.3.1

	Version 5.3.3

	Version 5.4.1

	Version 5.4.11

	Version 5.4.14

	Version 5.4.15

	Version 5.4.21

	Version 5.4.22

	Version 5.4.23

	Version 5.4.24

	Version 5.4.27

	Version 5.4.29

	Version 5.4.30

	Version 5.4.31

	Version 5.4.36

	Version 5.4.37

	Version 5.4.40

	Version 5.4.53

	Version 5.4.54

	Version 5.4.56

	Version 5.4.57

	Version 5.4.60

	Version 5.4.69

	Version 5.4.109

	Jam.py roadmap

Jam.py documentation

How the documentation is organized

Here is an overview of how the documentation is organized, that
will help you know where to look for certain things:

Getting started topics describe how to install the framework, create
a new project, take you through a series of steps to develop a Web application and explains how to deploy it.

Programming guides
discuss key topics and concepts at a fairly high level and provide useful
background information and explanation.

Business application builder is a detailed description of
the Application Builder used for application development and database
administration.

Class reference guides contain technical reference for
Jam.py classes APIs

FAQ topics covers most frequently asked questions.

How to contains code examples that can be useful to quickly
accomplish common tasks

Or you can go to the
table of contents

Video Tutorials

If you are new to Jam.py, we highly recommend that you watch these video tutorials

It is recommended to watch these videos with a resolution of 1080p

Tutorial 1 - Working with files and images [https://youtu.be/9rFXPyfN0Hg]

Tutorial 2 - Working with details [https://youtu.be/sbvxE-vEfsM]

Tutorial 3 - Users, roles, audit trail/change history [https://youtu.be/60LiWZa0CpY]

Tutorial 4 - Task tree [https://youtu.be/hsSKqEh6vL4]

Tutorial 5 - Forms [https://youtu.be/3sh-TSt52P0]

Tutorial 6 - Form events [https://youtu.be/DY463lcv0R4]

Tutorial 7 - Data aware controls [https://youtu.be/fMTq8P4XdGw]

Tutorial 8 - Datasets [https://youtu.be/gHTYj7h9ljI]

Tutorial 9 - Datasets Part 2 [https://youtu.be/1bUGmgBfrNw]

Tutorial 10 - Fields and filters [https://youtu.be/ahXqlZrA0fQ]

Tutorial 11 - Client-server interactions [https://youtu.be/nLOhdA2FX0I]

Tutorial 12 - Working with data on the server [https://youtu.be/dDK78lIjHHY]

Getting started

Here you can learn how to install the framework, create a new project,
develop a web application and deploy it.

	Installation

	Creating a project

	Demo project

	Tutorial. Part 1. First project

	Tutorial. Part 2. File and image fields

	Tutorial. Part 3. Details

	Deployment

Installation

Install python

Jam.py requires python. If it is not installed you can get the latest
version of Python at https://www.python.org/download/

You can use the following versions of Python with Jam.py:

Python 2

	Python 2.7 and newer

Python 3

	Python 3.4 and newer

You can verify that Python is installed by typing python from your shell;
you should see something like:

Python 2.7.12 (default, Nov 19 2016, 06:48:10)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

If Python 2 and Python 3 are installed try to type python3:

Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Install Jam.py

Installing an official release with pip

This is the recommended way to install Jam.py.

	Install pip [http://www.pip-installer.org/]. The easiest is to use the standalone pip installer [http://www.pip-installer.org/en/latest/installing.html#install-pip]. If your
distribution already has pip installed, you might need to update it if
it’s outdated. (If it’s outdated, you’ll know because installation won’t
work.)

	If you’re using Linux, Mac OS X or some other flavor of Unix, enter the
command

sudo pip install jam.py

at the shell prompt.

If you’re using Windows, start a command shell with administrator privileges
and run the command

pip install jam.py

This will install Jam.py in your Python installation’s site-packages directory.

Installing an official release manually

	Download the package archive.

	Create a new directory and unpack the archive there.

	Go into the directory and run the setup command from command line

$ python setup.py install

This will install Jam.py in your Python installation’s site-packages directory.

Note

on some unix like systems you may need to switch to root or run:
sudo python setup.py install

 Creating a project

Creating a project

Create a new directory.

Go into the directory and run from command line:

$ jam-project.py

The following files and folders will be created in the directory:

/
 css/
 js/
 img/
 reports/
 static/
 admin.sqlite
 server.py
 index.html
 wsgi.py

To start Jam.py web server run server.py script.

$./server.py

Note

You can specify a port as parameter, for example

$./server.py 8081.

By default, the port is 8080. If you will specify another port, you need to
use it in a browser in the next steps.

 Demo project

Demo project

The framework has a full fledged demo application that demonstrates programming
techniques used in the framework.

The demo is located in the demo folder of the Jam.py package or you can download
it by clicking on the link [http://jam-py.com/download/demo.tar.gz].

To start the demo application go to the demo folder and run server.py script.

$./server.py

Open a Web browser and enter 127.0.0.1:8080 in the address bar.

To see
Application builder
open a new page in a browser and enter 127.0.0.1:8080/builder.html

[image: Demo application]
[image: Application builder of demo project]

 Tutorial. Part 1. First project

Tutorial. Part 1. First project

Now, we’ll walk you through the creation of a basic CRM application.
Please follow the steps below:

	New project

	New catalog

	Lookup fields

	Lookup lists

	Customizing Forms

	Indexes

	Filters

 New project

New project

We’ll assume that jam.py is already installed. If not, see
Installation
guide how to do it.

First we create a folder for the new project and in this folder we execute the
jam-project.py script to create the project structures.

$ jam-project.py

After that we run server.py script that jam-project.py have created:

$./server.py

Now, to complete the creation of the project, open the web browser and go to
127.0.0.1:8080/builder.html to open the Application Builder. You should see the language
selection dialog.

[image: Select language dialog]
Select English and click OK button. The project parameters dialog box
appears.

[image: Project params]
Fill out the form and click “OK”. Now you should see the project tree in the
left panel.

[image: Project Application builder]
Open a new page, type 127.0.0.1:8080 in the address bar and press Enter.
A new project appears with an empty menu.

[image: Empty project]

 New catalog

New catalog

Let’s go back to the Application builder page and create a “Customers” catalog.

Now we select the “Catalogs” group in the project tree and and click the New
button at the bottom right corner of the page

[image: Catalogs]
In the
Item Editor
dialog, fill in the caption and name of the new catalog

[image: New customes catalog]
and click the New button in the bottom right corner of the dialog to add a new field.
The
Field Editor
dialog appears. Type the caption and name of the
“Firstname” field, select its type and click OK button.

[image: New journal tasks]
Similarly, we added the “Lastname” and “Phone” fields. When adding the “Lastname”
field, we checked the Required attribute.

[image: Customers fields]
Now, to save the changes, click the OK button. When saving, the Application
builder created the CRM_CUSTOMERS table in the ctm.sqlite database:

[image: Table created]
Go to the Project page, refresh it and click the New
button and then OK button:

[image: Customers page]

 Lookup fields

Lookup fields

Now we will create the “Contacts” item.

Select the “Journals” group in the project task tree and add a new journal in the
same way that we created the “Customers” catalog.

First we add the “Contact date” field of the “datetime” type and then “Notes” fields of the “text” type.

Let’s add the
lookup field
“Customer” field that will store a reference to a record in the “Customers” catalog.

[image: Adding Customer field]
To create a lookup field, after specifying its caption and name, we need to
select a lookup item. Select Lookup tab and click the button to the right of
the Lookup item input

[image: Cutomer lookup tab]
and double click the record to select it.

[image: Selecting Customer lookup item]
The same way specify a lookup field.

[image: Lastname lookup field]
In the same way we add the “Firstname” and “Phone” lookup fields. For this fields
we specify the “Customer” field as their Master field attribute.

[image: contacts_firstname.png]
[image: Phone lookup field]
Click the “OK” button to save the “Contacts” item.

[image: Contacts sql]
As you can see, there are no “FIRSTNAME” and “PHONE” fields in the “CRM_CONTACTS”
table. This is due to the fact that we have set Master field attribute of these
fields to “Customer”. The “Customer” field will store a reference to a record in the
“Customers” catalog and that record have the “Fisrtname” and “Phone” fields.

When we refresh the project page and click the New button we’ll see that
there is a small button to the right of the “Customer” input.

[image: Customer input]
When we click on it and select a record in the “Customers” catalog the
fields “Customer”, “Firstname” and “Phone” will be filled.

[image: Customer input selected]

 Lookup lists

Lookup lists

Now we create a
lookup List
“Status”.

Select the “Task” node in the project tree and click the Lookup lists button.

[image: Lookup lists]
Click the New button and specify the new lookup list name and add a list of
integer-text pairs:

[image: Lookup list entries]
Save the Lookup Lists dialog and open the “Contacts” journal to add the “Status”
field

[image: Status field]
and set the Lookup values attribute to the “Status” lookup list:

[image: Status lookup field]
And finally, before saving, open the “Customer” field and set the Required
and Typeahead attributes. When the Typeahead is checked, typeahead is
enabled for the lookup field,

[image: Customer attributes]
[image: Customer typeahead attribute]
set Default value of the “Contact date” field to “CURRENT DATETIME”

[image: Contact date field default value]
and Default value of the “Status” field to “Contact” selecting them in the
drop-down lists.

[image: Status field default value]

 Customizing Forms

Customizing Forms

When we refresh the project page we’ll see that fields in the table and
in the edit form of the “Contacts” journal are displayed in the order in which
they were created.

[image: Contacts new record]
To change how fields are displayed in the table, click the View Form
button to open the
View Form Dialog
Let’s change the displayed fields using left, right, up
and down buttons

[image: View contacts1]
Let’s click on the button right to the Sort fields input and select the
fields by which user can sort the contents of the table by clicking in the
corresponding column header of the table.

[image: view_contacts_order_by.png]
To change the way the fields are displayed in the edit form click the Edit Form
button to open the
Edit Form Dialog

[image: Edit contacts2]
To see the result of our work, go to the project page, refresh it and click
the New button.

[image: Contacts view]

 Indexes

Indexes

Let’s set the default sorting of records of the “Contacts” journal.
To do so click the
Order
button:

[image: Contacts order]
And now we create a corresponding index for the “Contacts” journal database table.
Click the Indices button to open
Indices Dialog
and then click the New button and specify the index:

[image: New index]

 Filters

Filters

Filters
are used to select records from the database table according to the specified
criteria.

Click the Filters button to open
Filters Dialog

[image: Filters dialog]
Now click the New button and fill out the following form:

[image: New filter]
Similarly, we created other filters:

[image: All filters]
When we refresh the project page, the Filters button will appear in the
header of the “Contacts” form. Clicking this button opens the “Filters” dialog box:

[image: Contacts filters]

 Tutorial. Part 2. File and image fields

Tutorial. Part 2. File and image fields

In this part we will demonstrate how to work with files and images in Jam.py.

Adding Image field

Let’s select the “Customers” catalog, Double-click it to open the
Item Editor Dialog
and add an image field “Photo”:

[image: image_field.png]
Now refresh the project page, click the Customers menu item and open the edit form.

[image: image_project1.png]
Double-click the image in the editing form to select an image from the Open File
dialog box.

[image: select_image.png]
[image: image_project2.png]

Note

To clear an image, hold down the Ctrl key and double-click the image.

 Tutorial. Part 3. Details

Tutorial. Part 3. Details

In this part of the tutorial we will explain how to work with details.

Let’s select the “Details” group in the project tree and and click the New
button at the bottom right corner of the page

[image: detail_group.png]
In the
Item Editor
dialog box, we will name the new item “To do list” and add the two fields
“Created” and “To do” in the same way as in the previous tutorial:

[image: new_detail.png]
After saving the “To do list”, select the “Contacts” journal and click the
Details button in the right pane to open the
Details Dialog.
Click the right arrow button to add the “To do list” to the “Contacts” details
and the OK button to save changes.

[image: details_dialog.png]
A new “To do list” item will be created as a child of the “Contacts” journal.

[image: contacts_to_do_list.png]
Select the “Contacts” journal again and click the Edit form button to open the
Edit Form Dialog. Select Form tab,
click the button to the right of the Edit details input and select the
“To do list” check box.

[image: details_to_edit.png]
Let’s update the project page and dblclick on the contact. Now we can add items
to the to-do list of the contact.

[image: new_to_do_item.png]
Click the Groups node in the project tree, dblclick the Details row and
set Visible attribute to true.

[image: detail_group_visible.png]
When we refresh the project page, we will see the “To do list” item in the main menu.
Click on it to see the to do list of all contacts.

[image: todo_all.png]
Select the “Contacts” journal again and click the View form button to open the
View Form Dialog.
Select Form tab, click the button to the right of the View detail input and
select the “To do list” check box.

[image: contacts_view_detail.png]
In the project page will see that the to-do list changes when the contact changes.

[image: todo_completed.png]

 Jam.py deployment with Apache and mod_wsgi

Jam.py deployment with Apache and mod_wsgi

Once you’ve got mod_wsgi installed and activated, edit your Apache server’s
httpd.conf file and add the following. If you are using a version of Apache older
than 2.4, replace Require all granted with Allow from all and also add
the line Order deny,allow above it.

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py
WSGIPythonPath /path/to/mysite.com

<Directory /path/to/mysite.com/mysite>
<Files wsgi.py>
Require all granted
</Files>
</Directory>

Alias /static/ /path/to/mysite.com/static/

<Directory /path/to/mysite.com/static>
Require all granted
</Directory>

The first bit in the WSGIScriptAlias line is the base URL path you want to
serve your application at (/ indicates the root url), and the second is the
location of a “WSGI file” – see below – on your system, usually inside of
your project package (mysite in this example). This tells Apache to serve
any request below the given URL using the WSGI application defined in that
file.

The WSGIPythonPath line ensures that your project package is available for
import on the Python path; in other words, that import mysite works.

The <Directory> piece just ensures that Apache can access your
wsgi.py file.

The next lines ensure that anything in the /static/ URL space is explicitly
served as a static files.

See also

See the additional information on the deployment in the
How to deploy

 Jam.py programming

Jam.py programming

Here, the basic concepts of Jam.py programming will be explained.

	Task tree
	Video

	Workflow
	Video

	Working with modules

	Client side programming
	Index.html

	Initializing application

	Forms

	Form templates

	Form events

	Form options

	Data-aware controls

	Data programming
	Dataset

	Navigating datasets

	Modifying datasets

	Fields

	Common fields

	Lookup fields

	Filtering records

	Filters

	Details

	Server side programming
	on_apply events

	on_open_events

	Programming reports
	Report templates

	Creating a report

	Report parameters

	Client-side report programming

	Server-side report programming

 Task tree

Task tree

All objects of the framework represent a tree of objects. These object are
called items.

All items of the tree have common ancestor class AbstractItem (
client reference
/
server reference
) and common attributes:.

	ID - unique in the framework ID of the item

	owner - immediate parent and owner of the item

	task - root of the task tree

	items - list of child items

	item_type - type of the item

	item_name - the name of the item that will be used in programming code
to get access to the item

	item_caption - the item name that appears to users

At the root of the tree is the task item.

The task contains group items. There are three types of groups that have the
following values of the item_type attribute:

	“items” - these groups contain items with “item” item_type, that can have
associated database table.

	“details” - such groups also contain items that can have associated database
tables, but they can be used to create details for other items (see
Details
).

	“reports” - these groups contain reports - items with “report” item_type,
that are used to create reports.

You can create your own groups.

Items that can have associated database table can own details, that are used to
store records that belong to a record of the master.

For example the task tree of the
Demo project
is:

/demo/
 catalogs/
 customers
 tracks
 albums
 artists
 genres
 media_types
 journals/
 invoices/
 invoice_table
 details/
 invoice_table
 reports/
 invoice
 purchases_report
 customers_report

At the root of the task tree is a task with the item_name demo. It has
four groups: catalogs, journals, details and reports. The
catalogs, journals groups have item_type “items”. The items they own
are wrappers over the corresponding database tables. There is one detail item with
item_name invoice_table, that also has it’s own database table, and three
reports in the reports group.

The invoices journal has the invoice_table detail, which keeps a list
of tracks in an customer’s invoice. So there are two items with the same name
“invoice_table” (detail_item and detail). They share the same database table.

Every item is an attribute of its owner and all items, tables and reports are
attributes the task as well (they all have a unique item_name).

A task is a global object on the client. To access it, just type task
anywhere in the code.

On the server, the task is not global. Jam.py is an event-driven environment.
Each event has as a parameter the item (or field) that triggered the event.
Functions defined in the server module of an item that can be executed from
the client module using the
server
method have the corresponding item as the first parameter as well.

Knowing an item, we can access any other item of the task tree. For example to
get access to the customers catalog we can write

def on_apply(item, delta, params):
 customers = item.task.catalogs.customers.copy()

or just

def on_apply(item, delta, params):
 customers = item.task.customers.copy()

The hierarchical structure of the project is one of the bases of the DRY
(don’t repeat yourself) principle of the framework.

For example, some methods of the items, when executed, successively generate
events for the task, group and the item.

This way we can define a basic behavior for all items in the event handler of
the task, that can be expanded in the event handler of the group, and finally,
if necessary, can be specified in the event handler of the item itself. For more
details see
Form events

Video

The Task tree [https://youtu.be/hsSKqEh6vL4] video tutorial demonstrates the task tree using
Demo project

 Workflow

Workflow

In the Jam.py framework, two tasks work at the same time: the Application builder
and the Project.
Each of them represents a tree of objects - there is the Application builder task
tree and the Project task tree. Therefore, before considering the Jam.py workflow,
you need to familiarize yourself with the concept of the
task tree.

The the Jam.py workflow is the following:

	When server.py is run it creates WSGI application that, in its own turn,
creates the Application builder task tree.

	The Project task tree is created on the server by Application builder after the
server receives first request from the Project client. To do so, the
Application builder uses metadata stored in admin.sqlite database in the root folder
of the project. After creating a task tree the server application triggers the
on_created
event, that can be used to initialize the server task tree.

	When an application on the client (Application builder or Project) is first run in
the browser (after builder.html or index.html have been loaded) the
empty task object is built that sends to the server a request to initialize
itself.

	If the project
safe mode
parameter is set, the framework checks if a user is logged, before executing
any request. If not, then the
application on the client creates a login form, and after the user inputs its
login and password, the client task sends the server a request to login.

	After successful login or if the project
safe mode
parameter is not set, the server sends the client information about the
requested task. The task on the client builds its tree, based on this
information, assigns event handlers to its objects and executes
on_page_loaded
event handler.

	In this event handler a developer should attach JQuery event handler
functions to HTML elements of the DOM, defined in the index.html file.
In these functions a developer can use methods of items of the
task tree
to perform some specific tasks.
These methods, when executed, trigger different events in which other methods
could be called and so on. See
Client side programming.

	Items of the task tree, that have corresponding database tables, have methods
to read and write data in the server database. See
Data programming.

	The report items generate the reports on the server, based on the LibrOffice
templates. See
Programming reports.

	All the items, whose methods generate a request to the server, do it the
following way: they call the method of the task that sends to the server the
ID
of the task, the
ID
the item, the type of the request and its parameters.
The server on receiving the request, based on passed IDs, finds the task
(it can be Project task or Application builder task) and the item on the server,
executes the corresponding method with passed parameters and returns the result
of the execution to the client. These server methods could trigger their own
events that can override the default behavior. See
Server side programming

Video

Form events [https://youtu.be/DY463lcv0R4] and Client-server interactions [https://youtu.be/nLOhdA2FX0I] video tutorials illustrate
the workflow of Jam.py project.

 Working with modules

Working with modules

For every item of the project task tree a developer can write
code that will be executed on the client or server. In Application builder for every
item there is two upper-right buttons Client module and Server module.
Clicking on these will open the
code editor.

Every item has a predefined set of events that could be triggered by
application. An event is a function defined in the module of an item that starts
with the on_ prefix. All published events are listed in the Events tab of the
information pane of the
code editor

In the
code editor
the developer
can write code for these events as well as define some functions.

For example the following code means that immediately after adding a new record
to the Invoices journal of the Demo project, the value of the invoicedate field
will be equal to the current date.

function on_after_append(item) {
 item.invoicedate.value = new Date();
}

Note

These events and functions became attributes of the item and could be
accessed anywhere in the project code.

 Client side programming

Client side programming

	Index.html

	Initializing application

	Forms

	Form templates

	Form events

	Form options

	Data-aware controls

 Index.html

Index.html

When user opens a Jam.py application in a Web browser, the browser first loads
the index.html file. This file is located in the root directory of a project.

[image: index.html]
It is the usual html file containing links to css and js files, that
client application is using. The files that start with jam are located in
the jam folder of the Jam.py package directory on the server.

For example

<link href="jam/css/jam.css" rel="stylesheet">

If needed, other files can be added here. For example some charting library.
It is better to place them in the js and css folders of the static
directory of the project.

For example

<script src="static/js/Chart.min.js"></script>

The index.html body tag have a div with class templates, that
contains html templates of the project forms. See
Forms
and
Form templates.
for details.

At the end of the file there is a following script:

<script>
$(document).ready(function(){
 task.load()
 });
</script>

In this script the
load
method of the task, that has been created when jam.js file was loaded, is
called that loads information about the
task tree
from the server and, based on this information, builds its tree, loads modules,
assigns event handlers to its items and triggers
on_page_loaded
event. See
Initializing application

 Initializing application

Initializing application

The
on_page_loaded
event is the first event triggered by an application on the client.

The new project uses
on_page_loaded
event handler to dynamically build the application’s main menu and attach the
on click event handler to menu items using JQuery.

function on_page_loaded(task) {

 $("title").text(task.item_caption);
 $("#title").text(task.item_caption);

 if (task.safe_mode) {
 $("#user-info").text(task.user_info.role_name + ' ' + task.user_info.user_name);
 $('#log-out')
 .show()
 .click(function(e) {
 e.preventDefault();
 task.logout();
 });
 }

 if (task.full_width) {
 $('#container').removeClass('container').addClass('container-fluid');
 }
 $('#container').show();

 task.create_menu($("#menu"), $("#content"), {view_first: true});

}

This event handler uses JQuery to select elements from the
index.html to set their attributes and assign events.

<div id="container" class="container" style="display: none">
 <div class="row-fluid">
 <div class="span6">
 <h3 id="title" class="muted"></h3>
 </div>
 <div class="span6 logging-info">

 Log out
 </div>
 </div>
 <div class="container">
 <div id="taskmenu" class="navbar">
 <div class="navbar-inner">
 <ul id="menu" class="nav">

 </div>
 </div>
 </div>
 <div id="content">
 </div>
</div>

Finally, the
create_menu
method of the task is called to dynamically create the main project menu.

 Forms

Forms

One of the key concepts of the framework is the concept of form.

When the user clicks the menu item of the main menu, the
view
method of the corresponding item is executed, which creates the view form.

This view form can have the New and Edit buttons, clicking on which
the
insert_record
and
edit_record
methods will be executed. These methods create an item edit form.

Forms are based on HTML
form templates
that determine their layout. Form templates are defined in the
Index.html
file, located in the root folder of the project.

The application already has default templates for viewing and editing data,
for specifying filters and report parameters.

For example, all edit forms of the Demo project use the following html template:

<div class="default-edit">
 <div class="form-body">
 <div class="edit-body"></div>
 <div class="edit-detail"></div>
 </div>
 <div class="form-footer">
 <button type="button" id="ok-btn" class="btn expanded-btn">
 <i class="icon-ok"></i> OK<small class="muted"> [Ctrl+Enter]</small>
 </button>
 <button type="button" id="cancel-btn" class="btn expanded-btn">
 <i class="icon-remove"></i> Cancel
 </button>
 </div>
</div>

You can define your own form templates to create your own custom forms. See
Form templates

When some method creates a form the application finds corresponding html template.

If container (a Jquery object) parameter is specified, the method empties it
and appends the html template to it, otherwise, it creates an empty modal form
and appends the template to the form.

After this it assigns item’s prefix_form
attribute to the template, triggers an on_prefix_form_created events,
shows the form and triggers on_prefix_form_shown events, where prefix is a
type of the form (view, edit, filter, param).
See Form events for details.

Below is an example of the on_edit_form_created event handler of the task:

function on_edit_form_created(item) {
 item.edit_form.find("#ok-btn").on('click.task', function() { item.apply_record() });
 item.edit_form.find("#cancel-btn").on('click.task', function(e) { item.cancel_edit(e) });

 if (!item.master && item.owner.on_edit_form_created) {
 item.owner.on_edit_form_created(item);
 }
 if (item.on_edit_form_created) {
 item.on_edit_form_created(item);
 }

 item.create_inputs(item.edit_form.find(".edit-body"));
 item.create_detail_views(item.edit_form.find(".edit-detail"));

 return true;
}

In this example, the the find method of JQuery is used to to find
elements on the form.

First, we assign a JQuery click event to OK and Cancel buttons,
so
cancel_edit
and
apply_record methods will be executed
when user clicks on the buttons. This methods cancel or apply changes made to
the record respectively and call the
close_edit_form
method to close the form.

Then, if item is not a detail and has an event handler on_edit_form_created,
defined in the owner’s client module, this event handler is executed.

After that, if item has an event handler on_edit_form_created,
defined in the item’s client module, this event handler is executed.

In these event handlers some additional actions could be executed.
For example you can assign click events to buttons or some other elements
contained in your edit form template, change
edit_options,
create tables using the
create_table
method and so on.

Then
the
create_inputs
method is called to create inputs in the element with class “edit-body”

Finally,
create_detail_views
method is called to create details in the element with class “edit-detail”

Note

If some elements are missing in the form template, an exception will not be raised.

 Form templates

Form templates

Form templates of the project are located in the div with the templates class
inside the body tag in the
Index.html
file.

When
load
method is executed, it cuts out the div with templates class from the
body and stores it in the
templates
attribute as a JQuery object.

To add a form template for an item you should add a div with the name-suffix
class in the templates div, where name is the
item_name
of the item and suffix
is the form type: view, edit, filter, param.

For example:

<div class="invoices-edit">
 ...
</div>

is an edit form template of the invoices item.

For a detail before its name there should be the name of its master,
separated by a hyphen:

<div class="invoices-invoice_table-edit">
 ...
</div>

If an item doesn’t have a form template then the form template of its owner, if
defined, will be used.

So the template

<div class="journals-edit">
 ...
</div>

will be used to create edit forms of items that Journals group owns and that
do not have its own edit form template.

If, after searching this way, no template was found for an item, the template
with the default-suffix class will
be used to create a form.

So the template

<div class="default-edit">
 ...
</div>

will be used to create edit forms for items that have no templates defined for
them and their owners.

When a new project is created the index.html already contains such templates.

Below is an example of default edit form template from index.html file:

<div class="default-edit">
 <div class="form-body">
 <div class="edit-body"></div>
 <div class="edit-detail"></div>
 </div>
 <div class="form-footer">
 <button type="button" id="ok-btn" class="btn expanded-btn">
 <i class="icon-ok"></i> OK<small class="muted"> [Ctrl+Enter]</small>
 </button>
 <button type="button" id="cancel-btn" class="btn expanded-btn">
 <i class="icon-remove"></i> Cancel
 </button>
 </div>
</div>

There are more template examples in the
Form examples
section.

 Form events

Form events

After the form is created and the HTML form template is added to the DOM,
the application triggers the following form events during the life cycle of
the form:

	on_view_form_created - the event is triggered when the form has been created but not shown yet

	on_view_form_shown -the event is triggered when the the form has been shown

	on_view_form_close_query - the event is triggered when an attempt is made to close the form

	on_view_form_closed - the event is triggered when the form has been closed

	on_view_form_keydown - the event is triggered when the keydown event occurs for the form

	on_view_form_keyup - the event is triggered when the keyup event occurs for the form

For other form types - edit, filter and param, replace ‘view’ with the form type,
for example on_edit_form_created for edit form.

We will first explain how to use the on_view_form_created event.

When the user clicks on menu item the application executes the
view
method of corresponding task tree item, this method creates a form using its HTML
form template and triggers first the
on_view_form_created event of
the task.

When you create a new project, the task client module already contains the
code, including the
on_view_form_created
event handler. This event handler is executed each time the view form is created
and defines the default behavior of view forms.

You can open the task client module to see this event handler.
If you need to change the default behavior for all view forms of the project,
you should do it here.

Below we describe the major steps it performs:

	Initializes the
view_form
and
table_options
that are used by some methods when view form and table are created.

	Assigns JQuery event handlers for default buttons to methods of the item,
depending on the user rights. In the example below the delete button is.
Initialized:

if (item.can_delete()) {
 item.view_form.find("#delete-btn").on('click.task', function(e) {
 e.preventDefault();
 item.delete_record();
 });
}
else {
 item.view_form.find("#delete-btn").prop("disabled", true);
}

	Executes the
on_view_form_created
event handler of the item group and.
on_view_form_created
of the item if they are defined:

if (!item.master && item.owner.on_view_form_created) {
 item.owner.on_view_form_created(item);
}

if (item.on_view_form_created) {
 item.on_view_form_created(item);
}

	Creates a table to display the item data and tables for details if they have
been specified by calling create_view_tables method

	Executes
open
method, that gets the item dataset from the server.

	Finally returns true to prevent calling of the on_view_form_created of the
owner group and the item because the were already called see the
_process_event method below.

After we initialized buttons and before creating tables we call the
on_view_form_created event handler of the item itself.

For example, in the client module of the tracks item of the demo app
the following
on_view_form_created
event handler is defined. In it we
change the height attribute of the
table_options
, create the copy of the
invoice_table set its attributes and call its
create_table
method that creates a table to display its data.

function on_view_form_created(item) {
 item.table_options.height -= 200;
 item.invoice_table = task.invoice_table.copy();
 item.invoice_table.paginate = false;
 item.invoice_table.create_table(item.view_form.find('.view-detail'), {
 height: 200,
 summary_fields: ['date', 'total'],
 });
 item.alert('Double-click the record in the bottom table to see track sales.');
}

The module also has the
on_after_scroll
event handler that will be executed when
the user moves to the other track and will get the sales of this track.

This example explains the principle of form events usage.

The order of triggering of events depends on the type of event.

There are three type of

The order in which events are generated depends on the type of event.

Close query events

When user tries to close the form the on_close_query event is first triggered
(if defined) for the item.

If the event handler returns true the application closes the form,
else if the event handler returns false the application leaves the form open,
otherwise the on_close_query event is triggered (if defined) the same way
for the item group and then for the task.

For example, by default there is the
on_edit_form_close_query
event handler in the task client module:

function on_edit_form_close_query(item) {
 var result = true;
 if (!item.virtual_table && item.is_changing()) {
 if (item.is_modified()) {
 item.yes_no_cancel(task.language.save_changes,
 function() {
 item.apply_record();
 },
 function() {
 item.cancel_edit();
 }
);
 result = false;
 }
 else {
 item.cancel_edit();
 }
 }
 return result;
}

This code checks whether the record has been modified and then opens
“Yes No Cancel” dialog.

If we want to close the form without this dialog we can defined the following
event handler in the client module of the item:

function on_edit_form_close_query(item) {
 item.cancel()
 return true;
}

Keydown, keyup events

These events are triggered the same way as Close query events, starting from the item,
but if the event handler returns true, the event handlers of the group and task
are not executed.

For example, by default there is the
on_edit_form_keyup
event handler in the task client module:

function on_edit_form_keyup(item, event) {
 if (event.keyCode === 13 && event.ctrlKey === true){
 item.edit_form.find("#ok-btn").focus();
 item.apply_record();
 }
}

This code saves the changes of the record to the database table when user
presses Ctrl+Enter.

Suppose we want to save the changes when user presses Enter. Then we write the
following event handler in the item client module:

function on_edit_form_keyup(item, event) {
 if (event.keyCode === 13){
 item.edit_form.find("#ok-btn").focus();
 item.apply_record();
 return true;
 }
}

In this case the event handler of the task won’t be called when the user press
Enter.

All other events

For other events, the event handler of the task is called first, if it doesn’t
return true, the event handler of the group is executed if it doesn’t
return true the event handler of the item is called.

This mechanism is implemented the _process_event method of the Item class in
the jam.js module.

_process_event: function(form_type, event_type, e) {
 var event = 'on_' + form_type + '_form_' + event_type,
 can_close;
 if (event_type === 'close_query') {
 if (this[event]) {
 can_close = this[event].call(this, this);
 }
 if (!this.master && can_close === undefined && this.owner[event]) {
 can_close = this.owner[event].call(this, this);
 }
 if (can_close === undefined && this.task[event]) {
 can_close = this.task[event].call(this, this);
 }
 return can_close;
 }
 else if (event_type === 'keyup' || event_type === 'keydown') {
 if (this[event]) {
 if (this[event].call(this, this, e)) return;
 }
 if (!this.master && this.owner[event]) {
 if (this.owner[event].call(this, this, e)) return;
 }
 if (this.task[event]) {
 if (this.task[event].call(this, this, e)) return;
 }
 }
 else {
 if (this.task[event]) {
 if (this.task[event].call(this, this)) return;
 }
 if (!this.master && this.owner[event]) {
 if (this.owner[event].call(this, this)) return;
 }
 if (this[event]) {
 if (this[event].call(this, this)) return;
 }
 }
}

 Form options

Form options

For each type of form an item has an attribute that controls the modal form
behavior:

	view_options

	edit_options

	filter_options

	param_options

This is an object that has the following attributes, specifing parameters of the
modal form:

	width - the width of the modal form, the default value is 560 px,

	title - the title of the modal form, the default value is the value of a
item_caption
attribute,

	close_button - if true, the close button will be created in the upper-right
corner of the form, the default value is true,

	close_caption - if true and close_button is true, will display ‘Close - [Esc]’
near the button

	close_on_escape - if true, pressing on the Escape key will trigger the
corresponding close_form method.

	close_focusout - if true, the corresponding close_form method will be called
when a form loses focus

	template_class - if specified, the div with this class will be searched in
the task
templates
attribute and used as a form html template when creating a form

The
edit_options
has a fields attribute, that specify a list of field names that the
create_inputs
method will use, if fields attribute of its options parameter is not
specified, the default value is a list of field names set in the
Edit Form Dialog
in the Application builder.

The
view_options
has a fields attribute, that specify a list of field names that the
create_table
method will use, if fields attribute of its options parameter is not
specified, the default value is a list of field names set in the
View Form Dialog
in the Application builder.

The width of the modal form, created in the following example, will be 700 px.

function on_edit_form_created(item) {
 item.edit_options.width = 700;
}

 Data-aware controls

Data-aware controls

To create a table to display an item’s dataset use
create_table
method:

item.create_table(item.view_form.find(".view-table"), table_options);

To create data controls to edit fields of the of the dataset use
create_inputs
method:

item.create_inputs(item.edit_form.find(".edit-body"), input_options);

These methods have two parameters - container and options. The first
parameter is a JQuery container in which the controls will be placed. The second
- options, satisfying the way the data will be displayed. For detailed
information see their API reference.

The methods are usually used in the on_view_form_created and
on_edit_form_created event handlers.

All visual controls (tables, inputs, checkboxes), created by this methods
are data-aware. This means that they immediately reflect any changes of the
item dataset.

Sometimes it is necessary to disable this interaction. To do so use the
disable_controls
and
enable_controls
methods respectively.

Videos

Data aware controls [https://youtu.be/fMTq8P4XdGw]

 Data programming

Data programming

	Dataset

	Navigating datasets

	Modifying datasets

	Fields

	Common fields

	Lookup fields

	Filtering records

	Filters

	Details

 Dataset

Dataset

Jam.py framework uses a dataset concept that is very close to
datasets of Embarcadero Delphi [https://en.wikipedia.org/wiki/Delphi_(programming_language)].

Note

There are other ways to read and modify the database data. You can use the
connect
method of the task to get a connection from the connection pool and use
the connection to get access to the database using Python Database API.

 Navigating datasets

Navigating datasets

Each active dataset has a cursor, or pointer, to the current row in the dataset.
The current row in a dataset is the one whose values can be manipulated by
edit, insert, and delete methods, and the one, whose field values,
data-aware controls on a form currently show.

You can change the current row by moving the cursor to point at a different row.
The following table lists methods you can use in application code to move to
different records:

	Client method

	Server method

	Description

	first

	first

	Moves the cursor to the first row in an item dataset.

	last

	last

	Moves the cursor to the last row in an item dataset.

	next

	next

	Moves the cursor to the next row in an item dataset.

	prior

	prior

	Moves the cursor to the previous row in an item dataset.

In addition to these methods, the following table describes two methods that
provide useful information when iterating through the records in a dataset:

	Client method

	Server method

	Description

	bof

	bof

	If the method returns true, the cursor is at the first row in the dataset, otherwise, the cursor is not known to be at the first row in the dataset.

	eof

	bof

	If the method returns true, the cursor is at the last row in the dataset, otherwise, the cursor is not known to be at the last row in the dataset.

Each time the cursor move to another record in the dataset the following events
are triggered:

	Client event

	Server event

	Description

	on_before_scroll

	on_before_scroll

	Occurs before an application scrolls from one record to another.

	on_after_scroll

	on_after_scroll

	Occurs after an application scrolls from one record to another.

Using this methods we can navigate a dataset. For example,

on the client:

function get_customers(customers) {
 customers.open();
 while (!customers.eof()) {
 console.log(customers.firstname.value, customers.lastname.value);
 customers.next();
 }
}

on the server:

def get_customers(customers):
 customers.open()
 while not customers.eof():
 print customers.firstname.value, customers.lastname.value
 customers.next()

Shorter ways to navigate dataset

There is the each method on the client that can
be used to navigate a dataset:

For example:

function get_customers(customers) {
 customers.open();
 customers.each(function(c) {
 if (c.rec_no === 10) {
 return false;
 }
 console.log(c.rec_no, c.firstname.value, c.lastname.value);
 });
}

On the server we can iterate dataset rows the following way:

def get_customers(customers):
 customers.open()
 for c in customers:
 if c.rec_no == 10:
 break
 print c.firstname.value, c.lastname.value

Both functions will output customer names for the first 10 records in the dataset.

In both cases the c and customers are pointers to the same object.

 Modifying datasets

Modifying datasets

When an application opens an item dataset, the dataset automatically enters
browse state. Browsing enables you to view records in a dataset, but you
cannot edit records or insert new records. You mainly use browse state to
scroll from record to record in a dataset.

For more information about scrolling from record to record, see
Navigating datasets.

From browse state all other dataset states can be set. For example, calling
the insert or append methods changes its state from browse to insert.

Two methods can return a dataset to browse state. Cancel ends the current
edit, insert, and returns a dataset to browse state. Post writes changes
to the dataset, and if successful, also returns a dataset to browse state. If
this operations fail, the current state remains unchanged.

To check an item dataset state use item_state attribute or is_new
is_edited or is_changing methods:

	Client

	Server

	Description

	item_state

	item_state

	Indicates the current operating state of the item dataset.

	is_new

	is_new

	Returns true if the item dataset is in insert state.

	is_edited

	is_edited

	Returns true if the item dataset is in edit state.

	is_changing

	is_changing

	Returns true if the item dataset is in insert or edit state.

You can use the following item methods to insert, update, and delete data in dataset:

	Client

	Server

	Description

	edit

	edit

	Puts the item dataset into edit state.

	append

	append

	Appends a record to the end of the dataset, and puts the dataset in insert state.

	insert

	insert

	Inserts a record at the beginning of the dataset, and puts the dataset in insert state.

	post

	post

	Saves the new or altered record, and puts the dataset in browse state.

	cancel

	cancel

	Cancels the current operation and puts the dataset in browse state.

	delete

	delete

	Deletes the current record and puts the dataset in browse state.

All changes made to the dataset are stored in memory, the item records changes
to change log. Thus, after all the changes have been made, they can be stored in
the associated database table by calling the apply method. The apply
method generates and executes SQL query to save changes to the database.

	Client

	Server

	Description

	log_changes

	log_changes

	Indicates whether to log data changes.

	apply

	apply

	Sends all updated, inserted, and deleted records from the item dataset to the server for writing to the database.

 Fields

Fields

All items, working with database table data have a
fields
attribute - a list of field objects, which are used to represent fields in item’s
table records.

Every field have the following attributes:

	Client

	Server

	Description

	owner

	owner

	The item that owns this field.

	field_name

	field_name

	The name of the field that will be used in programming code to get access to the field object.

	field_caption

	field_caption

	The name of the field that appears to users.

	field_type

	field_type

	Type of the field, one of the following values: text, integer, float, currency, date, datetime, boolean, blob.

	field_size

	field_size

	A size of the field with type text

	required

	required

	Specifies whether a nonblank value for a field is required.

To get access to the item dataset data, the Field class have the following properties:

	Client

	Server

	Description

	value

	value

	Use this property to get or set the field’s value of the current record. When reading the value is converted to the type of the field. So for fields of type integer, float and currency, if value for this field in database table record is NULL, value of this property is 0. To get unconverted value use the raw_value property.

	text

	text

	Use this property to get or set the value of the field as text.

	lookup_value

	lookup_value

	Use this property to get or set lookup value, see Lookup fields.

	lookup_text

	lookup_text

	Use this property to get or set the lookup value of the field as text, see Lookup fields.

	display_text

	display_text

	Represents the field’s value as it is displayed in data-aware controls. When the field is a lookup field it’s value is the lookup_text value, otherwise it is the text value, with regard of project locale parameters. This behavior can be overridden by the on_field_get_text event handler of the item that owns the field.

	raw_value

	raw_value

	Use this property to get field value of the current record as it is stored in database. No conversion is used.

In addition every field is an attribute of the item that owns it. So, to get
access to a field of an item use the following syntax: item.field_name

invoices.total.value

invoices.total is the reference to the
Total field of the Invoices item and the
invoices.total.value is the value of this field

Below are the values of the attributes of the fields of the invoices item in the
Demo project

customer integer
 value: 2
 text: 2
 lookup_value: Köhler
 lookup_text: Köhler
 display_text: Leonie Köhler
firstname integer
 value: 2
 text: 2
 lookup_value: Leonie
 lookup_text: Leonie
 display_text: Leonie
billing_address integer
 value: 2
 text: 2
 lookup_value: Theodor-Heuss-Straße 34
 lookup_text: Theodor-Heuss-Straße 34
 display_text: Theodor-Heuss-Straße 34
id integer
 value: 1
 text: 1
 lookup_value: None
 lookup_text:
 display_text: 1
date date
 value: 2014-01-01
 text: 01/01/2014
 lookup_value: None
 lookup_text:
 display_text: 01/01/2014
total currency
 value: 2.08
 text: $2.08
 lookup_value: None
 lookup_text:
 display_text: $2.08

 Common fields

Common fields

Items that have access to the database data can have common fields. They are
defined in the group they belong to:

[image: Common fields]
Here two fields are defined: id and deleted.

The id field is set as a primary key and will store a unique identifier
for each record in the database table. This value is automatically generated by
the framework when inserting a new record into the table.

The deleted field is set as a deletion flag. When the ‘Soft delete’
check-box is checked in the
Item Editor Dialog,
the delete method does not erase a record physically from the table, but uses
this field to mark the record as deleted. The open method takes this into
account when an SQL query is generated to get records from the database table.

For detail groups two more fields could be defined — master_id and
master_rec_id. They are used to link detail records to the a record in
master table, see Details.

 Lookup fields

Lookup fields

A lookup field can display a user friendly value that is bound to another value
in the another table or value list. For example, the lookup field can
display a customer name that is bound to a respective customer ID number in
another item’s table or list.

When entering a value in the lookup field the user chooses from a list of values.
This can make data entry quicker and more accurate.

The two types of lookup fields that you can create are a lookup field,
based on lookup item, and a value list.

Lookup item based lookup field

In the framework you can add a field to an item to look up information in another
item’s table. For example in the Demo application Albums catalog there is the
Artist lookup field.

[image: albums_edit_form.png]
To set the value of the field the user must click on the button to the right of the
field input and select a record from the ‘’Artists’’ catalog that will appear.
Then the value of this field will be the id of the record.
The other way to set value of the field is to use typeahead, if Typeahead
flag is set in the
Field Editor Dialog:

[image: Lookup field]
For such fields Lookup item and Lookup field must be specified in the
Field Editor Dialog:

The SQL query that is generated on the server, when the open method is called
and expanded parameter is set to true (default), uses JOIN clause to
get lookup values for such fields. Thus each such field has a pair of values:
the first value stores a reference to a record in the lookup item table (the value
of its primary key field), and the second value have the value of the lookup
field in this record.

To get access to this values use the following properties of lookup fields:

	Client

	Server

	Description

	value

	value

	A value, that is stored in the item table, that is a reference to a record in the lookup item table.

	lookup_value

	lookup_value

	A value of the lookup field in the lookup item table.

Sometimes there is a need to have two or more values from the same record in the
lookup item table. For example, the “”Invoices” journal in Demo has several
lookup fields (“Customer”, “Billing Address”, “Billing City”, and so on)
that have information about a customer, all stored in one record in the
“Customers” item table, describing that customer. In order to avoid creating
unnecessary fields in the “Invoices” item table, storing the same reference
to a record, and creating JOIN s for each such field, all lookup fields
except “Customers” have Master field value pointing to the “Customers”
field. These fields don’t have corresponding fields in the items’ underlying
database table. Their value property is always equal to the value property of
the master field and the SQL query that is generated on the server, when the
open method is called, uses one JOIN clause for all this fields.

[image: Master field example]
When user clicks on the button to the right of the field input or uses typeahead,
the application creates a copy of the lookup item of the field, sets its
lookup_field
attribute to the field. and
triggers
on_field_select_value
event. Write this event handler to specify fields that will be displayed,
set up filters for the lookup item, before it will be opened and displayed for
a user to select a value for the field.

The lookup field in the lookup item can also be a lookup field, for example:

[image: tracks_lookup_field.png]
To set up such a field use Lookup field 2 and Lookup field 3 attributes.

Value list

Sometimes a source of a lookup field can be defined as a value list. For
example, a MediaType field in the Tracks catalog of the
Demo project has a Lookup value list attribute set
to the MediaTypes lookup list:

[image: MediaType field definition]
Use the Lookup List Dialog of the task to define
such lookup lists.

See also

Lookup fields

Lookup lists

 Filtering records

Filtering records

There are three ways to define what records an item
dataset
will get from the database table
when the open method is called:

	to specify where parameter (option) of the open method,

	call the set_where method, before calling the open method,

	or use
filters.

When where parameter is specified, it is always used even if the set_where
method was called or item has filters whose values have been set.

When where parameter is omitted the parameter passed to the set_where
method are used.

For example on the client in the following code in the first call of the open
method the where option will be used to filter records,
in the second call the parameters passed to set_where and only the third
time the value of invoicedate1 filter will be used

function test(invoices) {
 var date = new Date(new Date().setYear(new Date().getFullYear() - 1));

 invoices.clear_filters();
 invoices.filters.invoicedate1.value = date;

 invoices.open({where: {invoicedate__ge: date}});

 invoices.set_where({invoicedate__ge: date});
 invoices.open();

 invoices.open();
}

date = datetime.datetime.now() - datetime.timedelta(days=3*365)

The same code on the server looks the following way:

from datetime import datetime

def test(invoices):
 date = datetime.now()
 date = date.replace(year=date.year-1)

 invoices.clear_filters()
 invoices.filters.invoicedate1.value = date

 invoices.open(where={'invoicedate__ge': date})

 invoices.set_where(invoicedate__ge=date)
 invoices.open()

 invoices.open()

In the framework, the following symbols and corresponding constants are defined
to filter records:

	Filter type

	Filter symbol

	Constant

	SQL Operator

	EQ

	‘eq’

	FILTER_EQ

	=

	NE

	‘ne’

	FILTER_NE

	<>

	LT

	‘lt’

	FILTER_LT

	<

	LE

	‘le’

	FILTER_LE

	<=

	GT

	‘gt’

	FILTER_GT

	>

	GE

	‘ge’

	FILTER_GE

	>=

	IN

	‘in’

	FILTER_IN

	IN

	NOT IN

	‘not_in’

	FILTER_NOT_IN

	NOT IN

	RANGE

	‘range’

	FILTER_RANGE

	BETWEEN

	ISNULL

	‘isnull’

	FILTER_ISNULL

	IS NULL

	EXACT

	‘exact’

	FILTER_EXACT

	=

	CONTAINS

	‘contains’

	FILTER_CONTAINS

	uses LIKE with the “%” sign to find records where field value contains a search string

	STARTWITH

	‘startwith’

	FILTER_STARTWITH

	uses LIKE with the “%” sign to find records where field value starts with a search string

	ENDWITH

	‘endwith’

	FILTER_ENDWITH

	uses LIKE with the “%” sign to find records where field value ends with a search string

	CONTAINS ALL

	‘contains_all’

	FILTER_CONTAINS_ALL

	uses LIKE with the “%” sign to find records where field value contains all words of a search string

The where the parameter of the open method is a dictionary, whose keys
are the names of the fields that are followed, after double underscore, by a
filter symbol. For EQ filter the filtering symbol ‘__eq’ can be omitted.
For example {'id': 100} is equivalent to {'id__eq': 100}.

See also

Dataset

Filters

Client

open

set_where

Server

open

set_where

 Filters

Filters

For each item that have access to a database table a list of filter objects can
be created.

To create filters use
an Filters Dialog of the Application builder.

Filters provide a convenient way for users to visually specify parameters of the
request made by the application to the project database

Each filter has the following attributes:

	owner – an item that owners this filter,

	filter_name — the name of the filter that can be used in programming code

	filter_caption - the name of the filter used in the visual representation
in the client application,

	filter_type — type of the filter, see
Filtering records,

	visible — if the value of this attribute is true, a visual
representation of this filter will be created by the
create_filter_inputs
method, when a filters option is not specified,

	value — a value of the filter,

All filters of the item are attributes of the filters of its object.
By using filter_name we can get access to the filter object:

invoices.filters.invoicedate1.value = new Date()

Another way to get access to the filter is to use
filter_by_name
method:

invoices.filter_by_name('invoicedate').value = new Date()

See also

Dataset

Filtering records

Client

filters

Filter class

assign_filters

clear_filters

each_filter

filter_by_name

Server

filters

Filter class

clear_filters

filter_by_name

 Details

Details

Details are used in the framework to work with tabular data, pertaining to a record
in an item’s table.

For example, the Invoices journal in the Demo application has the
InvoiceTable detail, which keeps a list of tracks in an customer’s invoice.

Details and detail items share the same underlying database table.

To create a detail, you must first create a detail item (select Details group of
the project tree and click on New button) and then use the
Details Dialog
(select item in the project tree and click on Details button)
to add a detail to an item.

For example the following code

def on_created(task):
 task.invoice_table.open()
 print task.invoice_table.record_count()

 task.invoices.open(limit=1)
 task.invoices.invoice_table.open()
 print task.invoices.invoice_table.record_count()

will print:

2259
6

Details have two
common fields -
master_id and master_rec_id, that are used to store information about the
ID of the master (each item have its own unique ID) and the value of the primary
field of the record of its master. This way each table can be linked to several
items. As well as each item can have several details. To get access to details of
an item use its details attribute. To get access to the master of the detail
use its master attribute.

Detail class, used to create details, is an ancestor of the Item class and
inherits all its attributes, methods and events.

Note

The apply method of the Detail class does nothing. To write changes made
to a detail use apply method of its master.

To work with a detail its muster must be active

To make any changes to a detail its master must be in an edit or insert mode

 Server side programming

Server side programming

In most cases, the client sends a request to the server when following methods
of an item are executed:

	open

	apply

	print

	server

In these cases the client sends to the server the
ID
of the item’s task, the
ID
of the item, the type of the request and its parameters.

The server on receiving the request, based on passed IDs, finds the task
(it can be Project task or Application builder task) and the item on the server,
executes the corresponding method with passed parameters and returns the result of
the execution to the client. The server method can trigger events that can
modify its default behavior.

Every item of the task tree have the
environ
and
session
attributes that store context of the current request.

The most common server events are:

	on_created - The event is triggered by the task when it has just been created by the server application. It can be used to initialize the project.

	on_apply events - These events are triggered when the apply method of the item is called on the client or the server

	on_open_events - These events are triggered when the open method of the item is called on the client or the server

	on_generate - “The event is triggered when the print method of a report is called on the client.

Note

Note that the task tree on the server is immutable, you can not change the
attributes of the items in the task tree.

You must use the
copy
method to create a copy of an item. This copy is an exact copy of an item
at the time of creating of the task tree. It is not added to the
task tree
and will be destroyed by Python garbage collector when no longer needed.

 on_apply events

on_apply events

When the apply method of the item is called
on the client or the
server, the server application, by default,
generates SQL query, based on changes made to the dataset and executes it.

This behavior can be changed by writing an
on_apply
event handler in the item server module.

Sometimes it becomes necessary to execute some code, when changes are saved, for
all items. In this case the on_apply event handler of the task (declared
in the task server module) can be used.

The following code describes how these events are handled:

#...
result = None
if self.task.on_apply:
 result = self.task.on_apply(self, delta, params, connection)
if result is None and self.on_apply:
 result = self.on_apply(self, delta, params, connection)
if result is None:
 result = self.apply_delta(delta, params, connection)
#...
return result

It checks if the task has an on_apply event handler. If the on_apply
event handler is declared in the task server module, it is executed.

If the on_apply event handler of the task is not declared or the result
of the event handler returns None, the method checks whether the item has an
on_apply
event handler. If it is declared in the item server module, it is executed.

If the result returned by the item event handler is None, the
apply_delta method of the item is called that generates SQL query,
execute it and returns the result

Example

Here is an example how on_apply can be used

 on_open_events

on_open_events

When the open method of the item is called
on the client or the
server, the server application
executes the following code:

result = None
if self.task.on_open:
 result = self.task.on_open(self, params)
if result is None and self.on_open:
 result = self.on_open(self, params)
if result is None:
 result = self.execute_open(params)

It checks if the task has an on_open event handler. If the on_open
event handler is declared in the task server module, it is executed.

If the on_open event handler of the task is not declared or the result
of the event handler returns None, the method checks whether the item has an
on_open
event handler. If it is declared in the item server module, it is executed.

If the result returned by the item event handler is None, the
execute_open method of the item is called that generates SQL query,
execute it and returns the result

Example

Here is an example how on_open can be used

 Programming reports

Programming reports

	Report templates

	Creating a report

	Report parameters

	Client-side report programming

	Server-side report programming

 Report templates

Report templates

To create a report, you must first prepare a report template in LibreOffice Calc.

The template files are located in the report folder of the project directory.

The following figure shows a template of the Invoice report.

[image: Invoice report template]
Reports in Jam.py are band-oriented.

Each report template is divided into bands. To set bands use the leftmost column
of a template spreadsheet.

In the Invoice report template there are three bands: title, detail and
summary.

In addition, templates can have programmable cells.

For example, in the template of Invoice report the I7 cell contains the text
%(date)s.

Programmable cell begins with %, then follows the name of the cell in
the parenthesis which is followed by character s.

 Creating a report

Creating a report

To add a new report to Jam.py project, choose the Reports node in the project
tree, the click the New button and fill in the caption, name and the template file
name of the report.

[image: Creating a report]
If a visible checkbox is set, the default code adds the report to the
Reports menu of the project.

 Report parameters

Report parameters

You can specify the parameters of the report. For example, the
Customer purchases report of the Demo project have three parameters.

[image: Report parameters]
To add or change a report parameter click Report params button in the left
panel of the Application builder. A form will appear displaying the list of existing
parameters. Then click New or Edit button of the form to add or change the
parameter.

[image: Report param]
In the dialog box fill in:

	Caption - the name of the parameter that appears to users

	Name - the name of the parameter will be used in programming code to get
access to the parameter object.

	Type - the data type of the parameter

	Visible - the client application creates a form to specify the parameters
before printing the report. If this checkbox is checked, the input element for
this parameter will appear in the form

	Required - if this checkbox is checked and Visible attribute is set,
the client application will require a users to specify the parameter value
before printing the report

	Align - specifies how a value of the parameter will be aligned in the
input element

You can create a lookup parameter, For example, the Customer purchases
report has a Customer parameter that can be selected from Customers
catalog:

[image: Lookup parameter]
In this case you should specify

	Lookup item - the item to select the parameter value from

	Lookup field - the field in the lookup item

Form for setting the parameters of Customer purchases report is as follows:

[image: Customer purchases parameters example]

 Client-side report programming

Client-side report programming

To print a report on the client use the
print
method.

As a result of calling this function, the client calls
create_param_form
method to create a form for editing the report parameters, based on the html
template defined in the index.html file
(see Forms).

This method, after creating the form, triggers the following events:

	on_param_form_created
of the task.

	on_param_form_created
of the report group that owns the report, if one is defined

	on_param_form_created
of the report, if one is defined.

The default code has the
on_param_form_created
event handler, defined for the task. In this event, the click on the Print
button is connected to the report’s
process_report
method.

function on_param_form_created(item) {
 item.create_param_inputs(item.param_form.find(".edit-body"));
 item.param_form.find("#ok-btn").on('click.task', function() {
 item.process_report()
 });
 item.param_form.find("#cancel-btn").on('click.task', function() {
 item.close_param_form()
 });
}

In its turn the
process_report
method triggers

	on_before_print_report
event handler of the report group

	on_before_print_report
event handler of the report

In this event handlers developer can define some common (report group
event handler) or specific (report event handler) attributes of the report.

For example, in the default code, there is the on_before_print_report event
handler of the report group, in which report’s
extension
attribute is defined:

function on_before_print_report(report) {
 var select;
 report.extension = 'pdf';
 if (report.param_form) {
 select = report.param_form.find('select');
 if (select && select.val()) {
 report.extension = select.val();
 }
 }
}

In the following event handler, defined in the client module of the
invoice report of the Demo application, the value of the report
id parameter is set:

function on_before_print_report(report) {
 report.id.value = report.task.invoices.id.value;
}

After that the
process_report
method sends asynchronous request to the server to generate the report
(see Server-side programming).

The server returns to the method an url to a file with generated report.

The method then checks if the
on_open_report event handler of
the report group is defined. If this events handler if defined calls it,
otherwise checks the
on_open_report of the report. If it
is defined then calls it.

If none of this events are defined, it (depending on the report
extension
attribute) opens the report in the browser or saves it to disc.

 Server-side report programming

Server-side report programming

When a server gets a request from a client to generate report, it first of all
creates a copy of the report and then this copy calls the
generate
method.

This method triggers the
on_before_generate
event. In this event handler developer should write a code that generates the
content of the report.

For example for the invoice report of the Demo application this event is as
follows:

def on_generate(report):
 invoices = report.task.invoices.copy()
 invoices.set_where(id=report.id.value)
 invoices.open()

 customer = invoices.firstname.display_text + ' ' + invoices.customer.display_text
 address = invoices.billing_address.display_text
 city = invoices.billing_city.display_text + ' ' + invoices.billing_state.display_text + ' ' + \
 invoices.billing_country.display_text
 date = invoices.invoicedate.display_text
 shipped = invoices.billing_address.display_text + ' ' + invoices.billing_city.display_text + ' ' + \
 invoices.billing_state.display_text + ' ' + invoices.billing_country.display_text
 taxrate = invoices.taxrate.display_text
 report.print_band('title', locals())

 tracks = invoices.invoice_table
 tracks.open()
 for t in tracks:
 quantity = t.quantity.display_text
 track = t.track.display_text
 unitprice = t.unitprice.display_text
 sum = t.amount.display_text
 report.print_band('detail', locals())

 subtotal = invoices.subtotal.display_text
 tax = invoices.tax.display_text
 total = invoices.total.display_text
 report.print_band('summary', locals())

First, we use the
copy
method to create a copy of the invoices journal.

invoices = report.task.invoices.copy()

We create the copiy because multiple users can simultaneously generate the same
report in parallel threads.

Then we call the set_where method of the copy:

invoices.set_where(id=report.id.value)

where report.id.value is report id parameter, the value of which we set in the
on_before_print_report
event handler on the client and which is equal to the current id field
value of the invoice journal.

Then, using the
open
method, we obtain the records on the server. After that the
print_band
method is used to print title band:

report.print_band('title', locals())

But before that we assign values to four local variables: customer, address,
city and date that correspond to programmable cells in the title band in the
report template.

Then the same way we generate detail and summary bands.

When the report is generated and the value of report
extension
attribute, set on the client, is not equals ‘pdf’ the server converts the ods
file using LibreOffice.

Once the report is generated it is stored in a report folder of the static
directory and the server sends the client the report file url.

 Jam.py FAQ

Jam.py FAQ

	What is the difference between catalogs and journals

	Howto upgrade an already created project to a new version of jampy?

	What are foreign keys used for?

	Can I use other libraries in my application

	When printing a report I get an ods file instead of pdf

 What is the difference between catalogs and journals

What is the difference between catalogs and journals

When a new project is created, its
task tree
has the following groups:
Catalogs, Journals, Details and Reports.

Catalogs and Journals belong to the Item Group type and have the same
functional purpose. See Groups.

We created them to distinguish between two types of data items:

	data items that contain information of catalog type
such as customers, organizations, tracks, etc. - Catalogs

	data items that store information about events
recorded in some documents, such as invoices, purchase orders, etc. - Journals

 Howto upgrade an already created project to a new version of jampy?

Howto upgrade an already created project to a new version of jampy?

To upgrade an existing project to a new package you must update the package.

You can do it using pip.

If you’re using Linux, Mac OS X or some other flavor of Unix, enter the
command:

sudo pip install --upgrade jam.py

If you’re using Windows, start a command shell with administrator privileges
and run the command

pip install --upgrade jam.py

 What are foreign keys used for?

What are foreign keys used for?

Foreign keys that you can create in the Application Builder prevent deletion
of a record in the lookup table if a reference to it is stored in the lookup field.

For example, when a foreign key is created on the “Customer” field for “Invoices”
item, user won’t be able to delete a customer in “Customers” catalog if a
reference to it is stored in “Invoices”.

The soft delete attribute of the lookup item must be set to false (see
Item Editor Dialog
) for the lookup field to appear in the
Foreign Keys Dialog

 Can I use other libraries in my application

Can I use other libraries in my application

You can add javascript libraries to use them for programming on the client side.

It is better to place them in the js folders of the static directory of the
project. And refer to them using the src attribute in the <script> tag of the
Index.html
file.

For example, Demo project uses Chart.js library to
create a dashboard:

<script src="/static/js/Chart.min.js"></script>

On the server side you can import python libraries to your modules.

For exapmple the mail item server module import smtplib library to send emails:

import smtplib

 When printing a report I get an ods file instead of pdf

When printing a report I get an ods file instead of pdf

When a report is generated the server application first creates an ods file.

If
extension
attribute of the report is set to ‘pdf’ or any other format except ‘ods’, the
application first creates an ods file and then uses LibreOffice
in “headless” mode to convert the ods file to that format.

If LibreOffice is currently running on the server this conversion
may not happen. You must close LibreOffice on the server for
the conversion to take place.

 How to

How to

Here is a useful code that you can use in your applications:

	How to install Jam.py on Windows
	Install Python

	About pip

	Setting up a virtual environment

	Install Jam.py

	Common pitfalls

	How to migrate development to production
	New project migration

	Existing project migration

	Importing metadata with server shutdown

	Importing metadata without server shutdown

	How to migrate to another database

	How to deploy
	How to deploy project on PythonAnywhere

	A step-by-step guide to deploy a Jam.py on the AWS

	How to deploy jam-py app at Linux Apache http server?

	How to do with Nginx with Gunicorn?

	How do I write functions which have a global scope

	How to validate field value

	How to add a button to a form

	How to execute script from client

	How to change style and attributes of form elements

	How to create a custom menu

	How to append a record using an edit form without opening a view form?

	How to prohibit changing record

	How to link two tables

	How change field value of selected records

	How to save edit form without closing it

	How to save changes to two tables in same transaction on the server

	How to prevent duplicate values in a table field

	How to implement some sort of basic multi-tenancy? For example, to have users with separate data.

	Can I use Jam.py with existing database

	How can I use data from other database tables

	How I can process a request or get some data from other application or service

	How can I perform calculations in the background

	Is it supported to have details inside details?

	Export to / import from csv files

	Authentication
	How to authenticate from custom users table

	How to create registration form

	How to give user ability to change the password

 How to install Jam.py on Windows

How to install Jam.py on Windows

Adapted from Django Docs [https://docs.djangoproject.com/]

The below document is adopted from Django Docs [https://docs.djangoproject.com/].

 How to migrate development to production

How to migrate development to production

Migrating development to production is very simple in Jam.py due to the ability
to export and import its metadata.

To understand the concept of metadata and the process of exporting and importing
metadata, please read the topic
Export/import metadata.
The process of importing metadata depends on the type of project database.

New project migration

	Create an empty database in the production envirnoment

	Run jam-project.py script to create a new project

	Set up the server. See

	Jam.py deployment with Apache and mod_wsgi,

	How to deploy.

	In the browser start the Application Builder and finish the creation of the
project with an empty database.

	open
Parameters dialog to set up the project.
Setup the following parameters:

	Production to true

	Safe mode

	Debugging to false

	Export the metadata of the development project to a zip file
in the Application Builder by clicking the
Export button.

	Import the metadata to the new project.

Note

For projects with SQLite database you can simply copy the development
project folder to the production environment.

 How to migrate to another database

How to migrate to another database

You can mirgate your data to another database.

For example, you developed your project with SQLite database amd want to move to
Postgress.

To do this, follow these steps:

	Create an empty Postgress database

	Create a new project with this database

	Export the metadata of the SQLite project to a zip file
in the Application Builder by clicking the
Export button.

	Import the metadata to the new project. The web application with create
database structures in the Postgress database.

	copy data from SQlite to Postgress database using the
copy_database method of the task:

	create in the sever module of the task the following function:

from jam.db.db_modules import SQLITE

def copy_db(task):
 task.copy_database(SQLITE, '/home/work/demo/demo.sqlite')

	then you can execute it one of the following ways:

	call this function in the
on_created event handler:

from jam.db.db_modules import SQLITE

def copy_db(task):
 task.copy_database(SQLITE, '/home/work/demo/demo.sqlite')

def on_created(task):
 copy_db(task)

	create a button in some form and use the task
server method to execute it

function on_view_form_created(item) {
 item.add_view_button('Copy DB').click(function() {
 task.server('copy_db')
 });
}

	or run from from debbuging console of the browser:

task.server('copy_db')

	Remove the code that was used.

Note

You can not migrate to SQLite database of the current database has foreign
keys

 How to deploy

How to deploy

	How to deploy project on PythonAnywhere

	A step-by-step guide to deploy a Jam.py on the AWS

	How to deploy jam-py app at Linux Apache http server?

	How to do with Nginx with Gunicorn?

 How to deploy project on PythonAnywhere

How to deploy project on PythonAnywhere

	Use pip to install Jam.py. To do this, open the bash console and run the
following command (for Python 3.7):

pip3.7 install --user jam.py

	Create a zip archive of your project folder, upload the archive in the Files
tab and unzip it.

We assume that you are registered as username and your project is now located
in the /home/username/project_folder directory.

	Open the Web Tab. Add a new web app. In the Code section specify

	Source code: /home/username/project_folder

	Working directory: /home/username/project_folder

In the WSGI configuration file:/var/www/username_pythonanywhere_com_wsgi.py file
add the following code

import os
import sys

path = '/home/username/project_folder'
if path not in sys.path:
 sys.path.append(path)

from jam.wsgi import create_application
application = create_application(path)

	Reload the server.

 A step-by-step guide to deploy a Jam.py on the AWS

A step-by-step guide to deploy a Jam.py on the AWS

This is adapted from
https://devops.profitbricks.com/tutorials/install-and-configure-mod_wsgi-on-ubuntu-1604-1/

I hope someone finds it useful.

	Create an AWS account and login

	Go to EC2, create an instance (in this case an Ubuntu 16.04 t2.micro)

	Download the private key when prompted

	Convert pem to ppk using Puttygen (see: https://stackoverflow.com/questions/3190667/convert-pem-to-ppk-file-format)

	Get EC2 instance public DNS from AWS dashboard

	SSH into EC2 instance using Putty (pointed to the Public DNS and your ppk)

	Username is ubuntu

	Refresh package library:

sudo apt-get update

	Install pip:

sudo apt-get install python3-pip

	Install jam.py:

sudo pip3 install jam.py

	Install Apache:

sudo apt-get install apache2 apache2-utils libexpat1 ssl-cert

	Install mod-wsgi:

sudo apt-get install libapache2-mod-wsgi-py3

	Restart Apache:

sudo /etc/init.d/apache2 restart

	Move here:

cd /var/www/html/

	Create directory:

sudo mkdir [appname]

	Move here:

cd [appname]

	Create app:

sudo jam-project.py

	Check it’s there:

ls

	Create the config:

sudo nano /etc/apache2/conf-available/wsgi.conf

	Paste the following

WSGIScriptAlias / /var/www/html/[appname]/wsgi.py
WSGIPythonPath /var/www/html/[appname]

<Directory /var/www/html/[appname]>
 <Files wsgi.py>
 Require all granted
 </Files>
</Directory>

Alias /static/ /var/www/html/[appname]/static/

<Directory /var/www/html/[appname]/static>
 Require all granted
</Directory>

	Exit and save

	Give file permissions to apache:

sudo chmod 777 /var/www/html/[appname]

	Give ownership to apache:

sudo chown -R www-data:www-data /var/www

	Enable wsgi:

sudo a2enconf wsgi

	Restart apache:

sudo /etc/init.d/apache2 restart

	Create security group on AWS to allow you to connect HTTP on port 80

	Assign instance to security group

	Test

	If it’s not working, check the error logs to see what’s going on:

nano /var/log/apache2/error.log

This was initialy published by Simon Cox on
https://groups.google.com/forum/#!msg/jam-py/Zv5JfkLRFy4/22tolZ-hAQAJ

 How to deploy jam-py app at Linux Apache http server?

How to deploy jam-py app at Linux Apache http server?

So basically deploying straight into the ie an cloud server with open 22, 80
and 443 port. Prerequisite is a signed certificate for the DNS server name
(YOUR_SERVER DNS entry from below). One can use a self signed, etc, not covering
those. Also, Python installed and sudo access (or root for Linux).
I have no idea at all about the MS Servers, sorry.

The App is in read only mode. You can access admin.html page, but can’t change
anything. Took me some fiddling with Google Cloud server, this is a micro Ubuntu
instance, plain apache2 install with apt-get.

	Install wsgi module for Apache :

apt-get install libapache2-mod-wsgi

	Enable ssl, wsgi module for apache:

a2enmod ssl wsgi

	Create a custom file for jam-py app, ie /etc/apache2/sites-available/test.conf,
for example (still wip):

<IfModule mod_ssl.c>
 <VirtualHost YOUR_IP:443>
 ServerName YOUR_SERVER
 ServerAlias
 ServerAdmin YOUR_EMAIL
 ErrorLog ${APACHE_LOG_DIR}/test-error-sec.log
 CustomLog ${APACHE_LOG_DIR}/test-access-sec.log combined

 #below is for cx_Oracle
 SetEnv LD_LIBRARY_PATH /u01/app/oracle/product/11.2.0/xe/lib
 SetEnv ORACLE_SID XE
 SetEnv ORACLE_HOME /u01/app/oracle/product/11.2.0/xe
 #finish cx_Oracle

 DocumentRoot /var/www/html/simpleassets

 SSLEngine on
 SSLCertificateFile "/etc/ssl/private/your.crt"
 SSLCertificateKeyFile "/etc/ssl/private/your.key"
 SSLCertificateChainFile "/etc/ssl/private/your_chain.crt"
 SSLCACertificateFile "/etc/ssl/private/your_CA.crt"

 WSGIDaemonProcess web user=www-data group=www-data processes=1 threads=5
 WSGIScriptAlias / /var/www/html/simpleassets/wsgi.py

 <Directory /var/www/html/simpleassets>
 Options +ExecCGI
 SetHandler wsgi-script
 AddHandler wsgi-script .py

 Order deny,allow
 Allow from all
 Require all granted

 <Files wsgi.py>
 Order deny,allow
 Allow from all

 # comment the following for ubuntu <13
 Require all granted
 </Files>
 </Directory>

 <Directory /var/www/html/simpleassets/static>
 # comment the following for ubuntu < 13
 Require all granted
 </Directory>
 </VirtualHost>
</IfModule>

The above file is using signed certificate your.crt with your.key, and CA,
chain file obtained from CA. Please review resources on the net about
certificates and the dns. You’ll need to obtain and copy those files
in /etc/ssl/private folder. Change YOUR_xyz with your preference.

The /var/www/html is the default Ubuntu folder for serving web pages.

	Install jam-py as usual.

I created the /var/www/html/simpleassets folder where unzipped jam-py
SimpleAssets project. Follow procedure explained there how to deploy these:

Basically, Export your project, save the zip file and copy it to your web
hosting server desired folder. Copy admin.sqlite and your database as well
(providing you’re using sqlite3 database). If using some other database ie
mysql, you’ll need to export/import the database.

	Enable test.conf (the above file name with no extension):

a2ensite test; systemctl restart apache2

That is it. At the moment, I’ve left port 80 as is, and jam-py is running only
on https port. To debug problems, I would start with SeLinux or apparmor.
With Ubuntu this might help:

sudo /etc/init.d/apparmor stop

Now, here is the question of how to run TWO jam-py instances on one https server?

One possible answer to this problem is the DNS. You might decide to set your
DNS to ie second_instance.YOUR_SERVER name (the above live example would be
jam2.research…).

So the above test.conf file would be almost the same except YOUR_SERVER is now
called second_instance.YOUR_SERVER

The /etc/apache2/sites-available/test3.conf file:

<IfModule mod_ssl.c>
 <VirtualHost YOUR_IP:443>
 ServerName second_instance.YOUR_SERVER
 ServerAlias
 ServerAdmin YOUR_EMAIL
 ErrorLog ${APACHE_LOG_DIR}/test3-error-sec.log
 CustomLog ${APACHE_LOG_DIR}/test3-access-sec.log combined
 #below is for cx_Oracle
 SetEnv LD_LIBRARY_PATH /u01/app/oracle/product/11.2.0/xe/lib
 SetEnv ORACLE_SID XE
 SetEnv ORACLE_HOME /u01/app/oracle/product/11.2.0/xe
 #finish cx_Oracle
 DocumentRoot /var/www/html/simpleassets3
 SSLEngine on
 SSLCertificateFile "/etc/ssl/private/your.crt"
 SSLCertificateKeyFile "/etc/ssl/private/your.key"
 SSLCertificateChainFile "/etc/ssl/private/your_chain.crt"
 SSLCACertificateFile "/etc/ssl/private/your_CA.crt"

 WSGIDaemonProcess assets3 user=www-data group=www-data processes=1 threads=5
 WSGIScriptAlias / /var/www/html/simpleassets3/wsgi.py

 <Directory /var/www/html/simpleassets3>
 Options +ExecCGI
 SetHandler wsgi-script
 AddHandler wsgi-script .py

 Order deny,allow
 Allow from all
 Require all granted

 <Files wsgi.py>
 Order deny,allow
 Allow from all

 # comment the following for ubuntu <13
 Require all granted
 </Files>
 </Directory>

 <Directory /var/www/html/simpleassets3/static>
 # comment the following for ubuntu < 13
 Require all granted
 </Directory>
 </VirtualHost>
</IfModule>

The jam-py application second_instance lives now in ie /var/www/html/simpleassets3,
and WSGIDaemonProcess is adjusted to new daemon, called assets3. Everything else
is almost the same.

This is possible because the SSL certificate is a * (star, or wildcard)
certificate, enabling you to run multiple services on one DNS domain.

This was initialy published by Dražen Babić on https://github.com/jam-py/jam-py/issues/35

 How to do with Nginx with Gunicorn?

How to do with Nginx with Gunicorn?

Green Unicorn (gunicorn) is an HTTP/WSGI server designed to serve fast clients
or sleepy applications. That is to say; behind a buffering front-end server
such as nginx or lighttpd.

By default, gunicorn will listen on 127.0.0.1. Navigate to jam App folder, or
use (ie in scripts, cron job, etc)

python /usr/bin/gunicorn --chdir /path/to/jam/App wsgi

or from /path/to/jam/App:

gunicorn wsgi
[2018-04-13 15:01:44 +0000] [8650] [INFO] Starting gunicorn 19.4.5
[2018-04-13 15:01:44 +0000] [8650] [INFO] Listening at: http://127.0.0.1:8000 (8650)
[2018-04-13 15:01:44 +0000] [8650] [INFO] Using worker: sync
[2018-04-13 15:01:44 +0000] [8654] [INFO] Booting worker with pid: 8654
.
.

To start jam.py on all interfaces and port 8081:

gunicorn -b 0.0.0.0:8081 wsgi
[2018-04-13 15:03:34 +0000] [8680] [INFO] Starting gunicorn 19.4.5
[2018-04-13 15:03:34 +0000] [8680] [INFO] Listening at: http://0.0.0.0:8081 (8680)
[2018-04-13 15:03:34 +0000] [8680] [INFO] Using worker: sync
[2018-04-13 15:03:34 +0000] [8684] [INFO] Booting worker with pid: 8684
.
.

Spin up 5 workers if u like with –workers=5

Nginx:

comment out default location in /etc/nginx/sites-enabled/default (Linux Mint):

 #location / {
 # First attempt to serve request as file, then
 # as directory, then fall back to displaying a 404.
try_files $uri $uri/ =404;
}

and add:

Proxy connections to the application servers
 # app_servers
 location / {

 proxy_pass http://app_servers;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;

 }

add in /etc/nginx/nginx.conf 127.0.0.1:8081 if this is your Gunicorn server address and port:

Configuration containing list of application servers
upstream app_servers {
server 127.0.0.1:8081;
}

This also enables to have different App servers on different ports

Client Request ----> Nginx (Reverse-Proxy)
 |
 /|\
 | | `-> App. Server I. 127.0.0.1:8081
 | `--> App. Server II. 127.0.0.1:8082
 `----> App. Server III. 127.0.0.1:8083

Restart nginx and viola!

Congratulations! We can now test Nginx with Jam.py.

Now, certs:

in /etc/nginx/sites-enabled/jam
we can have something like this to pass everything from http to https to 8001
port (or any other as per above):

server {
 listen 80;
 server_name YOUR_SERVER;

 access_log off;

 location /static/ {
 alias /path/to/jam/App/static/;
 }

 location / {
 proxy_pass http://127.0.0.1:8001;
 proxy_set_header X-Forwarded-Host $server_name;
 proxy_set_header X-Real-IP $remote_addr;
 add_header P3P 'CP="ALL DSP COR PSAa PSDa OUR NOR ONL UNI COM NAV"';
 }

 return 301 https://$server_name$request_uri;
}
server {
 listen 443;
 server_name YOUR_SERVER_FQDN;

 access_log off;

 location /static/ {
 alias /path/to/jam/App/static/;
 }

 location = /favicon.ico {
 alias /path/to/jam/App/favicon.ico;
 }

 ssl on;
 ssl_certificate /etc/nginx/ssl/YOUR_SERVER.crt;
 ssl_certificate_key /etc/nginx/ssl/YOUR_SERVER.key;
 add_header Strict-Transport-Security "max-age=31536000";

 location / {
 client_max_body_size 10M;
 proxy_pass http://127.0.0.1:8001;
 proxy_set_header X-Forwarded-Host $server_name;
 proxy_set_header X-Real-IP $remote_addr;
 add_header P3P 'CP="ALL DSP COR PSAa PSDa OUR NOR ONL UNI COM NAV"';
}

That’s it!

Congratulations! We can now test Nginx with Jam.py on https port!

This was initialy published by Dražen Babić on https://github.com/jam-py/jam-py/issues/67

 How do I write functions which have a global scope

How do I write functions which have a global scope

Each function defined in the server or client module of an item becomes an
attribute of the item.

Thus, using the
task tree,
you can access any function declared in the client or server module in any
project module.

For example, if we have a function some_func declared in the Customers client
module, we can execute it in any module of the project.
Note that the task is a global variable on the client.

task.customers.some_func()

On the server, the task is not global, but an item that triggered / called it is
passed to each event handler and function called by the
server
method. Therefore, if the some_func function is declared in the Customers
server module, it can be executed in a function or event handler as follows:

def on_apply(item, delta, params):
 item.task.customers.some_func()

Note that event handlers are just functions and can also be called from other
modules.

 How to validate field value

How to validate field value

Write the
on_field_validate
event handler to validate field value.

For example, The event will triggered when the
post
method is called, that saves the record in memory or
when the user leaves the input used to edit the unitprice field value.

function on_field_validate(field) {
 if (field.field_name === 'unitprice' && field.value <= 0) {
 return 'Unit price must be greater that 0';
 }
}

As an example, below is the code that doesn’t use the
on_field_validate
method and checks the value of the unitprice field and prevents the user
from leaving the input when the value is less than or equal to zero:

function on_edit_form_shown(item) {
 item.each_field(function(field) {
 var input = item.edit_form.find('input.' + field.field_name);
 input.blur(function(e) {
 var err;
 if ($(e.relatedTarget).attr('id') !== "cancel-btn") {
 err = check_field_value(field);
 if (err) {
 item.alert_error(err);
 input.focus();
 }
 }
 });
 });
}

function check_field_value(field) {
 if (field.field_name === 'album' && !field.value) {
 return 'Album must be specified';
 }
 if (field.field_name === 'unitprice' && field.value <= 0) {
 return 'Unit price must be greater that 0';
 }
}

In the on_edit_form_shown event handler, we iterate through all the fields using the each_field method and find the input data for each field, if it exists.

In the
on_edit_form_shown
event handler we iterate through all the fields using the
each_field
method and find the input for each field, if it exists. Each input has a class
with the name of the field (field_name).

Then we assign a jQuery blur event to it, in which we call the check_field_value
function, and, if it returns text string, we warn the user and focus the input.
Before calling the function, we check whether the “Cancel” button was pressed.

We declared the
on_edit_form_shown
event handler in the item’s module, so it will work in this module only.

We can declare the following event handler in the task client module so we can
write check_field_value function in any module we need to enable this field
validation. The
on_edit_form_shown of the task
is called first for every item when edit form is shown. See
Form events.

function on_edit_form_shown(item) {
 if (item.check_field_value) {
 item.each_field(function(field) {
 var input = item.edit_form.find('input.' + field.field_name);
 input.blur(function(e) {
 var err;
 if ($(e.relatedTarget).attr('id') !== "cancel-btn") {
 err = item.check_field_value(field);
 if (err) {
 item.alert_error(err);
 input.focus();
 }
 }
 });
 });
 }
}

In this event handler we check if the item has the check_field_value attribute.
Each function declared in a module becomes an attribute of the item.

 How to add a button to a form

How to add a button to a form

The simplest way to add a button to an edit / view from is to use
add_edit_button /
add_view_button
correspondingly. You can call this functions in the
on_edit_form_created /
on_view_form_created
event handlers.

For example the Customers item uses this code in its client module to add
buttons to a view form:

function on_view_form_created(item) {
 item.table_options.multiselect = false;
 if (!item.lookup_field) {
 var print_btn = item.add_view_button('Print', {image: 'icon-print'}),
 email_btn = item.add_view_button('Send email', {image: 'icon-pencil'});
 email_btn.click(function() { send_email() });
 print_btn.click(function() { print(item) });
 item.table_options.multiselect = true;
 }
}

In this code the item’s
lookup_field
attribute is checked and if it is defined (the view form is not created to select a
value for a lookup field) the two buttons are created and for them JQuery click
events are assigned to send_email and print functions declared in that
module.

 How to execute script from client

How to execute script from client

You can use
server
method to send a request to the server to execute a function defined in the
server module of an item.

En the example below we create the btn button that is a JQuery object.
Then we use its click method to attach a function that calls the
server
method of the item to run the calculate function defined in the server module
of the item.

The code in the client module:

function on_view_form_created(item) {
 var btn = item.add_view_button('Calculate', {type: 'primary'});
 btn.click(function() {
 item.server('calulate', [1, 2, 3], function(result, error) {
 if (error) {
 item.alert_error(error);
 }
 else {
 console.log(result);
 }
 })
 });
}

The code in the server module:

def calculate(item, a, b, c):
 return a + b + c

 How to change style and attributes of form elements

How to change style and attributes of form elements

You can access any DOM element on forms using jQuery.

In the following example, in the on_edit_form_created event handler defined
the item client module we find the OK button, hide it, and change the
text of the Cancel button to “Close” in the edit form:

function on_edit_form_created(item) {
 item.edit_form.find("#ok-btn").hide();
 item.edit_form.find("#cancel-btn").text('Close');
}

When an application creates input controls, it adds a class with a
name that is the
field_name
attribute of the corresponding field to each input.

Thus, using the jQuery selectors [https://www.w3schools.com/jquERY/jquery_ref_selectors.asp],
we can find the input of the customer field as follows (we select the input with
the “customer” class in the edit form):

item.edit_form.find("input.customer")

Having found the element of the form you can use JQuery methods to change it.

As the field inputs are created by
create_inputs
after the
on_edit_form_created
event have been triggered (see the on_edit_form_created event handler in the
task client module) you must write
on_edit_form_shown
event handler to change inputs.

For example this code

function on_edit_form_shown(item) {
 item.edit_form.find('input.name').css('color', 'red');
 item.edit_form.find('input.name').css('font-size', '24px');
 item.edit_form.find('input.tracks_sold').width(20);
 item.edit_form.find('input.genre').parent().width('40%');
 item.edit_form.find('input.composer').prop('type', 'password');
}

will change form inputs this way:

[image: form_elements_style.png]
Please, note that if you need to change the width of input with prepend or
append buttons (inputs of date, datetime and lookup fields) set the width of
the input parent:

item.edit_form.find('input.album').parent().width('50%');

Another way to change the style of DOM elements is to use CSS. When the task
node is selected in the Application Builder, the “project css” button is located
on the right pane. Click on it to open the project.css file, which is located
in the project folder. You can use it to input CSS that defines the style of
the DOM elements of the project.

Each item form created in the project has css classes that enable developer to
identify the form.

Each form has a class identifying it’s type: ‘view-form’, ‘edit-form’,
‘filter-form’ or ‘param-form’.

For example, the following code will remove the images in the buttons at the
bottom of the form:

.view-form .form-footer .btn i {
 display: none;
}

More edit form examples:

.edit-form #ok-btn {
 font-weight: bold;
 background-color: lightblue;
}

.edit-form.invoices input.total {
 color: red;
}

Also each form has a class with a name that is the
item_name
attribute of the item.

The following code will remove images in the buttons only in the Invoices
view form:

.view-form.invoices .form-footer .btn i {
 display: none;
}

You can change the way tables are displayed. The tables that are created by the
create_table
method have a css class “dbtable” and a class with a name that is the
item_name
attribute of the item. each column of the table alse have a class with a
name that is the
field_name
attribute of the corresponding field.

The example, the following code will display cells of the Invoices table
Customer column bold:

.dbtable.invoices td.customer {
 font-weight: bold;
}

One more way to change the way the field colum is displayed is to write the
on_field_get_html
event handler.

For example:

function on_field_get_html(field) {
 if (field.field_name === 'total') {
 if (field.value > 10) {
 return '' + field.display_text + '';
 }
 }
}

 How to create a custom menu

How to create a custom menu

To create a custom menu you must specify a custom_menu option for the task’s
create_menu
method in the task’s client module.

 How to append a record using an edit form without opening a view form?

How to append a record using an edit form without opening a view form?

You must first call the
open
method of the item to initiate its dataset. For example, if you want to add a
new record to invoices in the Demo application, you can do so as follows:

var invoices = task.invoices.copy();
invoices.open({ open_empty: true });
invoices.append_record();

In this code, we create a copy of the item using the
copy
method so that this operation does not affect the Invoices view form if it is
open in a tab.

You can also change the record, but before you do this, you must get it from
the server. Below is the code that modifies the record with id 411.
We check that the record exists using the rec_count property,
otherwise we display a warning.

var invoices = task.invoices.copy();
invoices.open({ where: {id: 411} });
if (invoices.rec_count) {
 invoices.edit_record();
}
else {
 invoices.alert_error('Invoices: record not found.');
}

In the example above the open method is not executed syncroniously.

The code below does it asyncroniously:

var invoices = task.invoices.copy();
invoices.open({ where: {id: 411} }, function() {
 if (invoices.rec_count) {
 invoices.edit_record();
 }
 else {
 invoices.alert_error('Invoices: record not found.');
 }
});

Invoices has the Modeless attribute set in the Edit form dialog, so the
the edit form with be opened in a tab. You can change it by setting
modeless attribute of
edit_options
to make the edit form modal:

var invoices = task.invoices.copy();
invoices.edit_options.modeless = false;

 How to prohibit changing record

How to prohibit changing record

Let’s assume that we have an item with a boolean field “posted”, and if the
value of the field is true, we must prohibit changing or deleting the record.

We can do this by writing the
on_after_scroll
event handler and using
permissions property:

function on_after_scroll(item) {
 if (item.rec_count) {
 item.permissions.can_edit = !item.posted.value;
 item.permissions.can_delete = !item.posted.value;
 if (item.view_form) {
 item.view_form.find("#delete-btn").prop("disabled", item.posted.value);
 }
 }
}

In this event handler we check the value of the “posted” field and set the
permissions property attributes to true.

We can also write the
on_apply
event handler in the server module of the item:

def on_apply(item, delta, params, connection):
 for d in delta:
 if d.posted.old_value:
 raise Exception('Document posted. No change allowed')

 How to link two tables

How to link two tables

We’ll explain how to link two items on example of the tracks and invoicetable items
from the demo application. We’ll link the record of tracks with the corresponding
list of sold tracks from invoicetable that contains all sold tracks from invoices.

The default behavior if
view_form
is defined in the
on_view_form_created
event handler declared in the task client module.

We will change it in the
on_view_form_created
event handler in the tracks client module

function on_view_form_created(item) {
 item.table_options.height -= 200;
 item.invoice_table = task.invoice_table.copy();
 item.invoice_table.paginate = false;
 item.invoice_table.create_table(item.view_form.find('.view-detail'), {
 height: 200,
 summary_fields: ['date', 'total'],
 });
}

Then we reduce height of the table that displays tracks data by 200 pixels

item.table_options.height -= 200;

create a
copy
of invoice_table, set its
paginate attribute to false and call the
create_table
method to create a table that will display the sold tracks

item.invoice_table = task.invoice_table.copy();
item.invoice_table.paginate = false;
item.invoice_table.create_table(item.view_form.find('.view-detail'), {
 height: 200,
 summary_fields: ['date', 'total'],
});

For this table we set the height to 200 pixels and define to summary fields.

This table will always be empty if we won’t define the following
on_after_scroll
event handler:

function on_after_scroll(item) {
 if (item.view_form.length) {
 if (item.rec_count) {
 item.invoice_table.set_where({track: item.id.value});
 item.invoice_table.set_order_by(['-invoice_date']);
 item.invoice_table.open(true);
 }
 else {
 item.invoice_table.close();
 }
 }
}

The
on_after_scroll
event is triggered whenever the current record is changed.
So when the track is changed we call
open
method, pre-setting the filter and order

item.invoice_table.set_where({track: item.id.value});
item.invoice_table.set_order_by(['-invoice_date']);
item.invoice_table.open(true);

This method sends a request to the server, that generates sql query, executes it
and returns a dataset that contains sold records of this track ordered in
descending order of invoice_date field.

If the tracks dataset is empty we clear the sold records dataset by calling the
close
method.

Because controls in Jam.py are data-aware every change of sold records dataset
will be displayed in the table that we created in the
on_view_form_created
event handler.

Now every time the track has changed the application send request to the server
to renew the sold tracks. This is not effective and sometimes can lead to
delays. To avoid this we use the JavaScript setTimeout function:

var scroll_timeout;

function on_after_scroll(item) {
 if (!item.lookup_field && item.view_form.length) {
 clearTimeout(scroll_timeout);
 scroll_timeout = setTimeout(
 function() {
 if (item.rec_count) {
 item.invoice_table.set_where({track: item.id.value});
 item.invoice_table.set_order_by(['-invoice_date']);
 item.invoice_table.open(true);
 }
 else {
 item.invoice_table.close();
 }
 },
 100
);
 }
}

This function guarantees that the data will be updated no more than
once every 100 milliseconds.

Since the invoicetable is a
detail it has the master_rec_id field that
stores a reference to invoice that has this record, we can show the user an
invoice that contains the current sold record.
To do so we pass to the
create_table
method the function that will be executed
when user double click the record:

item.invoice_table.create_table(item.view_form.find('.view-detail'), {
 height: 200,
 summary_fields: ['date', 'total'],
 on_dblclick: function() {
 show_invoice(item.invoice_table);
 }
});

and define the function as follows:

function show_invoice(invoice_table) {
 var invoices = task.invoices.copy();
 invoices.set_where({id: invoice_table.master_rec_id.value});
 invoices.open(function(i) {
 i.edit_options.modeless = false;
 i.can_modify = false;
 i.invoice_table.on_after_open = function(t) {
 t.locate('id', invoice_table.id.value);
 };
 i.edit_record();
 });
}

In this function we create a copy of the invoices journal and find the invoice.
When the open method is executed we will show the invoice by calling its
edit_record
method. But before calling it we set its attributes so that it will be modal and
the user won’t be able to modify it.

Besides we dynamically assign
on_after_open
event handler to the invoice_table detail of the invoice we get.
In this event handler we will find the current record in the sold records by
calling the
locate
method.

Finally we will check the
lookup_field
attribute of tracks. This attribute is true if the item was created to select
a value for the lookup field when a user clicks on the button to the right of
lookup field input. We will make so that the sold tracks are not shown when the
user selects the value for the lookup field.

In addition, we add an alert informing the user about the possibility of seeing
the invoice.

Finally the code of the
on_view_form_created
will be as follows:

function on_view_form_created(item) {
 if (!item.lookup_field) {
 item.table_options.height -= 200;
 item.invoice_table = task.invoice_table.copy();
 item.invoice_table.paginate = false;
 item.invoice_table.create_table(item.view_form.find('.view-detail'), {
 height: 200,
 summary_fields: ['date', 'total'],
 on_dblclick: function() {
 show_invoice(item.invoice_table);
 }
 });
 item.alert('Double-click the record in the bottom table ' +
 'to see the invoice in which the track was sold.');
 }
}

var scroll_timeout;

function on_after_scroll(item) {
 if (!item.lookup_field && item.view_form.length) {
 clearTimeout(scroll_timeout);
 scroll_timeout = setTimeout(
 function() {
 if (item.rec_count) {
 item.invoice_table.set_where({track: item.id.value});
 item.invoice_table.set_order_by(['-invoice_date']);
 item.invoice_table.open(true);
 }
 else {
 item.invoice_table.close();
 }
 },
 100
);
 }
}

function show_invoice(invoice_table) {
 var invoices = task.invoices.copy();
 invoices.set_where({id: invoice_table.master_rec_id.value});
 invoices.open(function(i) {
 i.edit_options.modeless = false;
 i.can_modify = false;
 i.invoice_table.on_after_open = function(t) {
 t.locate('id', invoice_table.id.value);
 };
 i.edit_record();
 });
}

[image: two_tables.png]

 How change field value of selected records

How change field value of selected records

In this example, we will show how to change the “Media Type” field of the “Tracks”
catalog to the same value for the selected records.

[image: set_media_type.png]
First we set the multiselect attribute of the
table_options
to true to display the check box in the leftmost column of the
“Tracks” table for the user to select the records and
create the Set media type button in the
on_view_form_created
event handler in the client module of “Tracks”.

function on_view_form_created(item) {
 item.table_options.multiselect = true;
 item.add_view_button('Set media type').click(function() {
 set_media_type(item);
 });
}

When this button is pressed, the set_media_type function defined in the
module is executed.

In this function we create a copy of the “Tracks” item. We pass to the
copy
method the handlers option equal to false. It means that all the settings
to the item made in the Form Dialogs in the Application Builder and all the
functions and events defined in the client module of the item will be
unavailable to the copy.

Then we analyze the
selections
attribute that is the array of the values of primary key field of the records,
selected by the user.

After it we initialize the dataset of the copy by calling the
open
method with open_empty option. We also set the fields options
so that the dataset will have only one field media_type.
We set the required attribute of that field to true.

And finally, before calling the
append_record
method, we dynamically assign the
on_edit_form_created
event handler to change the on click event of the OK button,
that was defined in the client module of the task.

In the new on click event handler we, first, call the
post
method to check that the media type value is set, if exception
is raised we call
edit
method to allow the user to set it.

function set_media_type(item) {
 var copy = item.copy({handlers: false}),
 selections = item.selections;
 if (selections.length > 1000) {
 item.alert('Too many records selected.');
 }
 else if (selections.length || item.rec_count) {
 if (selections.length === 0) {
 selections = [item.id.value];
 }

 copy.open({fields: ['media_type'], open_empty: true});

 copy.edit_options.title = 'Set media type to ' + selections.length +
 ' record(s)';
 copy.edit_options.history_button = false;
 copy.media_type.required = true;

 copy.on_edit_form_created = function(c) {
 c.edit_form.find('#ok-btn').off('click.task').on('click', function() {
 try {
 c.post();
 item.server('set_media_type', [c.media_type.value, selections],
 function(res, error) {
 if (error) {
 item.alert_error(error);
 }
 if (res) {
 item.selections = [];
 item.refresh_page(true);
 c.cancel_edit();
 item.alert(selections.length + '
 record(s) have been modified.');
 }
 }
);
 }
 finally {
 c.edit();
 }
 });
 };
 copy.append_record();
 }
}

When the user clicks the OK button, the item’s
server
method executes the set_media_type function on the server, which changes the
field value of the selected records.

After changing the records on the server we, on the client, unselect the records,
refresh the data of the page, cancel editing by calling the
cancel_edit
method and inform the user of the results.

def set_media_type(item, media_type, selections):
 copy = item.copy()
 copy.set_where(id__in=selections)
 copy.open(fields=['id', 'media_type'])
 for c in copy:
 c.edit()
 c.media_type.value = media_type
 c.post()
 c.apply()
 return True

 How to save edit form without closing it

How to save edit form without closing it

You can do it by adding a button that will save the record without closing the
edit form.

Below is examples for synchronous and asynchronous cases.

function on_edit_form_created(item) {
 var save_btn = item.add_edit_button('Save and continue');
 save_btn.click(function() {
 if (item.is_changing()) {
 item.post();
 try {
 item.apply();
 }
 catch (e) {
 item.alert_error(error);
 }
 item.edit();
 }
 });
}

function on_edit_form_created(item) {
 var save_btn = item.add_edit_button('Save and continue');
 save_btn.click(function() {
 if (item.is_changing()) {
 item.disable_edit_form();
 item.post();
 item.apply(function(error){
 if (error) {
 item.alert_error(error);
 }
 item.edit();
 item.enable_edit_form();
 });
 }
 });
}

 How to save changes to two tables in same transaction on the server

How to save changes to two tables in same transaction on the server

Below is two examples.

In the first example each
apply
method gets its own connection from connection pool and commits it after saveing
changes to the database.

In the second example the connection is received from connection pool and passed
to each
apply
method so changes are commited at the end.

import datetime

def change_invoice_date(item, invoice_id):
 now = datetime.datetime.now()

 invoices = item.task.invoices.copy(handlers=False)
 invoices.set_where(id=invoice_id)
 invoices.open()
 invoices.edit()
 invoices.invoice_date.value = now
 invoices.post()
 invoices.apply()

 customer_id = invoices.customer.value
 customers = item.task.customers.copy(handlers=False)
 customers.set_where(id=customer_id)
 customers.open()
 customers.edit()
 customers.last_modified.value = now
 customers.post()
 customers.apply()

import datetime

def change_invoice_date(item, invoice_id):
 now = datetime.datetime.now()

 con = item.task.connect()
 try:
 invoices = item.task.invoices.copy(handlers=False)
 invoices.set_where(id=invoice_id)
 invoices.open()
 invoices.edit()
 invoices.invoice_date.value = now
 invoices.post()
 invoices.apply(con)

 customer_id = invoices.customer.value
 customers = item.task.customers.copy(handlers=False)
 customers.set_where(id=customer_id)
 customers.open()
 customers.edit()
 customers.last_modified.value = now
 customers.post()
 customers.apply(con)

 con.commit()
 finally:
 con.close()

 How to prevent duplicate values in a table field

How to prevent duplicate values in a table field

One of the ways to do it is to write the
on_apply
event handler.

In the example below, the delta parameter is a dataset that contains the changes
that will be stored in the users table.

We go through the records of changes and if the record was not deleted or the
login field didn’t change we look for a record in the table with the same login
and if it exists raise the exception. If the user is editing the record
on the client using an edit form he won’t be able to save it and will see the
corresponding alert message.

def on_apply(item, delta, params, connection):
 for d in delta:
 if not (d.rec_deleted() or d.rec_modified() and d.login.value == d.login.old_value):
 users = d.task.users.copy(handlers=False)
 users.set_where(login=d.login.value)
 users.open(fields=['login'])
 if users.rec_count:
 raise Exception('There is a user with this login - %s' % d.login.value)

 How to implement some sort of basic multi-tenancy? For example, to have users with separate data.

How to implement some sort of basic multi-tenancy? For example, to have users with separate data.

You can implement a multi-tenancy using Jam.py.

For example, if some item have a user_id field, the following code in the
server module of the item will do the job:

def on_open(item, params):
 if item.session:
 user_id = item.session['user_info']['user_id']
 if user_id:
 params['__filters'].append(['user_id', item.task.consts.FILTER_EQ, user_id])

def on_apply(item, delta, params, connection):
 if item.session:
 user_id = item.session['user_info']['user_id']
 if user_id:
 for d in delta:
 if d.rec_inserted():
 d.edit()
 d.user_id.value = user_id
 d.post()
 elif d.rec_modified():
 if d.user_id.old_value != user_id:
 raise Exception('You are not allowed to change record.')
 elif d.rec_deleted():
 if d.user_id.old_value != user_id:
 raise Exception('You are not allowed to delete record.')

It uses a
session
attribute of the item to get a unique user id
and
on_open and
on_apply
event handlers.

The
on_open
event handler ensures that the sql select statement that applications generates
will return only records where the user_id field will be the same as the ID of
the user that sends the request.

And the
on_apply
event handler sets the user_id to the ID of the user that appended or modified
the records.

You can use a more general approach and add the following code to the server
module of the task. Then a multi-tenancy will be applied to every item that have
a user_id field:

def on_open(item, params):
 if item.field_by_name('user_id'):
 if item.session:
 user_id = item.session['user_info']['user_id']
 if user_id:
 params['__filters'].append(['user_id', item.task.consts.FILTER_EQ, user_id])

def on_apply(item, delta, params, connection):
 if item.field_by_name('user_id'):
 if item.session:
 user_id = item.session['user_info']['user_id']
 if user_id:
 for d in delta:
 if d.rec_inserted():
 d.edit()
 d.user_id.value = user_id
 d.post()
 elif d.rec_modified():
 if d.user_id.old_value != user_id:
 raise Exception('You are not allowed to change record.')
 elif d.rec_deleted():
 if d.user_id.old_value != user_id:
 raise Exception('You are not allowed to delete record.')

 Can I use Jam.py with existing database

Can I use Jam.py with existing database

Please read this:
Intergation with existing database

 How can I use data from other database tables

How can I use data from other database tables

You can use data from other database tables.

First you must specify table name and fields information.
You can do it the following way:

	Select project node in the task tree and click Database button.

	Set DB manual mode and specify the database connection attributes.

	Import tables information as described in the
Integration with existing database

	Select project node in the task tree, click Database button restore previous values.

Then in the server module of the new items you must add code to read and write
the data to the database

Below is the code for MySQL database (auto incremented primary field):

import MySQLdb
from jam.db import mysql

def on_open(item, params):
 connection = item.task.create_connection_ex(mysql, database='demo', \
 user='root', password='111', host='localhost', encoding='UTF8')
 try:
 sql = item.get_select_query(params, mysql)
 rows = item.task.select(sql, connection, mysql)
 finally:
 connection.close()
 return rows, ''

def on_apply(item, delta, params):
 connection = item.task.create_connection_ex(mysql, database='demo', \
 user='root', password='111', host='localhost', encoding='UTF8')
 try:
 sql = delta.apply_sql(params, mysql)
 result = item.task.execute(sql, None, connection, mysql)
 finally:
 connection.close()
 return result

If database use generators to get primary field values you must specify them
for new records (Firebird):

import fdb
from jam.db import firebird

def on_open(item, params):
 connection = item.task.create_connection_ex(firebird, database='demo.fdb', \
 user='SYSDBA', password='masterkey', encoding='UTF8')
 try:
 sql = item.get_select_query(params, firebird)
 rows = item.task.select(sql, connection, firebird)
 finally:
 connection.close()
 return rows, ''

def get_id(table_name, connection):
 cursor = connection.cursor()
 cursor.execute('SELECT NEXT VALUE FOR "%s" FROM RDB$DATABASE' % (table_name + '_SEQ'))
 r = cursor.fetchall()
 return r[0][0]

def on_apply(item, delta, params):
 connection = item.task.create_connection_ex(firebird, database='demo.fdb', \
 user='SYSDBA', password='masterkey', encoding='UTF8')
 for d in delta:
 if not d.id.value:
 d.edit()
 d.id.value = get_id(item.table_name, connection)
 for detail in d.details:
 for r in detail:
 if not r.id.value:
 r.edit()
 r.id.value = get_id(r.table_name, connection)
 r.post()
 d.post()
 try:
 sql = delta.apply_sql(params, firebird)
 result = item.task.execute(sql, None, connection, firebird)
 finally:
 connection.close()
 return result

You can use the task on_open and on_apply events. Below is the code
from task client module:

import MySQLdb
from jam.db import mysql

def on_open(item, params):
 if item.item_name in ['table1', 'table2']: # or
 #if item.table_name in ['table1', 'table2']:
 connection = item.task.create_connection_ex(mysql, database='demo', \
 user='root', password='111', host='localhost', encoding='UTF8')
 try:
 sql = item.get_select_query(params, mysql)
 rows = item.task.select(sql, connection, mysql)
 finally:
 connection.close()
 return rows, ''

def on_apply(item, delta, params):
 if item.item_name in ['table1', 'table2']:
 connection = item.task.create_connection_ex(mysql, database='demo', \
 user='root', password='111', host='localhost', encoding='UTF8')
 try:
 sql = delta.apply_sql(params, mysql)
 result = item.task.execute(sql, None, connection, mysql)
 finally:
 connection.close()
 return result

Note

Do not set History attribute to True for this tables. If you do so you’ll get
the exception. History table must be one for all databases that you use in
the project.
You can try to create the history table in the other database and write the
on_open and on_apply event handlers for it.

 How I can process a request or get some data from other application or service

How I can process a request or get some data from other application or service

You can access the data of your application for reading and writing by sending
a post request that has ‘ext’ added to url. For example:

http://example.com/ext/edit

When an web app on the server receives such request it
generates the
on_ext_request
event

 How can I perform calculations in the background

How can I perform calculations in the background

You can use this code in the task server module to run a background thread in
the web application once a 3 minutes (can be changed by setting interval)
to perform some calculations:

import threading
import time
import traceback

def background(task):
 interval = 3 * 60
 time.sleep(interval)
 while True:
 if not time:
 return
 with task.lock('background'):
 try:
 print('background')
 # some code to execute in background for example:
 # tracks = task.tracks.copy()
 # tracks.open()
 # for t in tracks:
 # t.edit()
 # t.sold.value = #some value
 # t.post()
 # tracks.apply()
 except Exception as e:
